Spaces:
Runtime error
Runtime error
| """ | |
| Reimplement evaluation.mat provided by Adobe in python | |
| Output of `compute_gradient_loss` is sightly different from the MATLAB version provided by Adobe (less than 0.1%) | |
| Output of `compute_connectivity_error` is smaller than the MATLAB version (~5%, maybe MATLAB has a different algorithm) | |
| So do not report results calculated by these functions in your paper. | |
| Evaluate your inference with the MATLAB file `DIM_evaluation_code/evaluate.m`. | |
| by Yaoyi Li | |
| """ | |
| import scipy.ndimage | |
| import numpy as np | |
| from skimage.measure import label | |
| import scipy.ndimage.morphology | |
| def gauss(x, sigma): | |
| y = np.exp(-x ** 2 / (2 * sigma ** 2)) / (sigma * np.sqrt(2 * np.pi)) | |
| return y | |
| def dgauss(x, sigma): | |
| y = -x * gauss(x, sigma) / (sigma ** 2) | |
| return y | |
| def gaussgradient(im, sigma): | |
| epsilon = 1e-2 | |
| halfsize = np.ceil(sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon))).astype(np.int32) | |
| size = 2 * halfsize + 1 | |
| hx = np.zeros((size, size)) | |
| for i in range(0, size): | |
| for j in range(0, size): | |
| u = [i - halfsize, j - halfsize] | |
| hx[i, j] = gauss(u[0], sigma) * dgauss(u[1], sigma) | |
| hx = hx / np.sqrt(np.sum(np.abs(hx) * np.abs(hx))) | |
| hy = hx.transpose() | |
| gx = scipy.ndimage.convolve(im, hx, mode='nearest') | |
| gy = scipy.ndimage.convolve(im, hy, mode='nearest') | |
| return gx, gy | |
| def compute_gradient_loss(pred, target, trimap): | |
| pred = pred / 255.0 | |
| target = target / 255.0 | |
| pred_x, pred_y = gaussgradient(pred, 1.4) | |
| target_x, target_y = gaussgradient(target, 1.4) | |
| pred_amp = np.sqrt(pred_x ** 2 + pred_y ** 2) | |
| target_amp = np.sqrt(target_x ** 2 + target_y ** 2) | |
| error_map = (pred_amp - target_amp) ** 2 | |
| loss = np.sum(error_map[trimap == 128]) | |
| return loss / 1000. | |
| def getLargestCC(segmentation): | |
| labels = label(segmentation, connectivity=1) | |
| largestCC = labels == np.argmax(np.bincount(labels.flat)) | |
| return largestCC | |
| def compute_connectivity_error(pred, target, trimap, step=0.1): | |
| pred = pred / 255.0 | |
| target = target / 255.0 | |
| h, w = pred.shape | |
| thresh_steps = list(np.arange(0, 1 + step, step)) | |
| l_map = np.ones_like(pred, dtype=np.float) * -1 | |
| for i in range(1, len(thresh_steps)): | |
| pred_alpha_thresh = (pred >= thresh_steps[i]).astype(np.int) | |
| target_alpha_thresh = (target >= thresh_steps[i]).astype(np.int) | |
| omega = getLargestCC(pred_alpha_thresh * target_alpha_thresh).astype(np.int) | |
| flag = ((l_map == -1) & (omega == 0)).astype(np.int) | |
| l_map[flag == 1] = thresh_steps[i - 1] | |
| l_map[l_map == -1] = 1 | |
| pred_d = pred - l_map | |
| target_d = target - l_map | |
| pred_phi = 1 - pred_d * (pred_d >= 0.15).astype(np.int) | |
| target_phi = 1 - target_d * (target_d >= 0.15).astype(np.int) | |
| loss = np.sum(np.abs(pred_phi - target_phi)[trimap == 128]) | |
| return loss / 1000. | |
| def compute_mse_loss(pred, target, trimap): | |
| error_map = (pred - target) / 255.0 | |
| loss = np.sum((error_map ** 2) * (trimap == 128)) / (np.sum(trimap == 128) + 1e-8) | |
| return loss | |
| def compute_sad_loss(pred, target, trimap): | |
| error_map = np.abs((pred - target) / 255.0) | |
| loss = np.sum(error_map * (trimap == 128)) | |
| return loss / 1000, np.sum(trimap == 128) / 1000 | |
| def compute_mad_loss(pred, target, trimap): | |
| error_map = np.abs((pred - target) / 255.0) | |
| loss = np.sum(error_map * (trimap == 128)) / (np.sum(trimap == 128) + 1e-8) | |
| return loss | |