Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import AutoencoderKL, TCDScheduler | |
| from diffusers.models.model_loading_utils import load_state_dict | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import hf_hub_download | |
| from controlnet_union import ControlNetModel_Union | |
| from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
| from PIL import Image, ImageDraw | |
| import numpy as np | |
| MODELS = { | |
| "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
| } | |
| config_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="config_promax.json", | |
| ) | |
| config = ControlNetModel_Union.load_config(config_file) | |
| controlnet_model = ControlNetModel_Union.from_config(config) | |
| model_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="diffusion_pytorch_model_promax.safetensors", | |
| ) | |
| state_dict = load_state_dict(model_file) | |
| model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
| controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
| ) | |
| model.to(device="cuda", dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
| "SG161222/RealVisXL_V5.0_Lightning", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| variant="fp16", | |
| ).to("cuda") | |
| pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
| def infer(image, model_selection, width, height, overlap_width, num_inference_steps, prompt_input=None): | |
| source = image | |
| target_size = (width, height) | |
| target_ratio = (width, height) # Calculate aspect ratio from width and height | |
| overlap = overlap_width | |
| # Upscale if source is smaller than target in both dimensions | |
| if source.width < target_size[0] and source.height < target_size[1]: | |
| scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) | |
| new_width = int(source.width * scale_factor) | |
| new_height = int(source.height * scale_factor) | |
| source = source.resize((new_width, new_height), Image.LANCZOS) | |
| if source.width > target_size[0] or source.height > target_size[1]: | |
| scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) | |
| new_width = int(source.width * scale_factor) | |
| new_height = int(source.height * scale_factor) | |
| source = source.resize((new_width, new_height), Image.LANCZOS) | |
| margin_x = (target_size[0] - source.width) // 2 | |
| margin_y = (target_size[1] - source.height) // 2 | |
| background = Image.new('RGB', target_size, (255, 255, 255)) | |
| background.paste(source, (margin_x, margin_y)) | |
| mask = Image.new('L', target_size, 255) | |
| mask_draw = ImageDraw.Draw(mask) | |
| mask_draw.rectangle([ | |
| (margin_x + overlap, margin_y + overlap), | |
| (margin_x + source.width - overlap, margin_y + source.height - overlap) | |
| ], fill=0) | |
| cnet_image = background.copy() | |
| cnet_image.paste(0, (0, 0), mask) | |
| final_prompt = "high quality" | |
| if prompt_input.strip() != "": | |
| final_prompt += ", " + prompt_input | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt(final_prompt, "cuda", True) | |
| for image in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| num_inference_steps=num_inference_steps | |
| ): | |
| yield cnet_image, image | |
| image = image.convert("RGBA") | |
| cnet_image.paste(image, (0, 0), mask) | |
| yield background, cnet_image | |
| def preload_presets(target_ratio): | |
| if target_ratio == "9:16": | |
| changed_width = 720 | |
| changed_height = 1280 | |
| return changed_width, changed_height, gr.update(open=False) | |
| elif target_ratio == "16:9": | |
| changed_width = 1280 | |
| changed_height = 720 | |
| return changed_width, changed_height, gr.update(open=False) | |
| elif target_ratio == "Custom": | |
| return 720, 1280, gr.update(open=True) | |
| def clear_result(): | |
| return gr.update(value=None) | |
| css = """ | |
| .gradio-container { | |
| width: 1200px !important; | |
| } | |
| """ | |
| title = """<h1 align="center">Diffusers Image Outpaint</h1> | |
| <div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div> | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(): | |
| gr.HTML(title) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| type="pil", | |
| label="Input Image", | |
| sources=["upload"], | |
| height = 300 | |
| ) | |
| prompt_input = gr.Textbox(label="Prompt (Optional)") | |
| with gr.Row(): | |
| target_ratio = gr.Radio( | |
| label = "Expected Ratio", | |
| choices = ["9:16", "16:9", "Custom"], | |
| value = "9:16", | |
| scale = 2 | |
| ) | |
| run_button = gr.Button("Generate", scale=1) | |
| with gr.Accordion(label="Advanced settings", open=False) as settings_panel: | |
| with gr.Column(): | |
| with gr.Row(): | |
| width_slider = gr.Slider( | |
| label="Width", | |
| minimum=720, | |
| maximum=1440, | |
| step=8, | |
| value=720, # Set a default value | |
| ) | |
| height_slider = gr.Slider( | |
| label="Height", | |
| minimum=720, | |
| maximum=1440, | |
| step=8, | |
| value=1280, # Set a default value | |
| ) | |
| with gr.Row(): | |
| model_selection = gr.Dropdown( | |
| choices=list(MODELS.keys()), | |
| value="RealVisXL V5.0 Lightning", | |
| label="Model", | |
| ) | |
| num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8 ) | |
| overlap_width = gr.Slider( | |
| label="Mask overlap width", | |
| minimum=1, | |
| maximum=50, | |
| value=42, | |
| step=1 | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["./examples/example_1.webp", "RealVisXL V5.0 Lightning", 1280, 720], | |
| ["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", 720, 1280], | |
| ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024], | |
| ], | |
| inputs=[input_image, model_selection, width_slider, height_slider], | |
| ) | |
| with gr.Column(): | |
| result = ImageSlider( | |
| interactive=False, | |
| label="Generated Image", | |
| ) | |
| target_ratio.change( | |
| fn = preload_presets, | |
| inputs = [target_ratio], | |
| outputs = [width_slider, height_slider, settings_panel], | |
| queue = False | |
| ) | |
| run_button.click( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| ).then( | |
| fn=infer, | |
| inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input], | |
| outputs=result, | |
| ) | |
| prompt_input.submit( | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| ).then( | |
| fn=infer, | |
| inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input], | |
| outputs=result, | |
| ) | |
| demo.launch(share=False) |