Spaces:
Running
on
Zero
Running
on
Zero
Added 1:1 image option.
Browse files
app.py
CHANGED
|
@@ -57,53 +57,6 @@ prompt = "high quality"
|
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
-
"""
|
| 61 |
-
def fill_image(image, model_selection):
|
| 62 |
-
|
| 63 |
-
margin = 256
|
| 64 |
-
overlap = 24
|
| 65 |
-
# Open the original image
|
| 66 |
-
source = image # Changed from image["background"] to match new input format
|
| 67 |
-
|
| 68 |
-
# Calculate new output size
|
| 69 |
-
output_size = (source.width + 2*margin, source.height + 2*margin)
|
| 70 |
-
|
| 71 |
-
# Create a white background
|
| 72 |
-
background = Image.new('RGB', output_size, (255, 255, 255))
|
| 73 |
-
|
| 74 |
-
# Calculate position to paste the original image
|
| 75 |
-
position = (margin, margin)
|
| 76 |
-
|
| 77 |
-
# Paste the original image onto the white background
|
| 78 |
-
background.paste(source, position)
|
| 79 |
-
|
| 80 |
-
# Create the mask
|
| 81 |
-
mask = Image.new('L', output_size, 255) # Start with all white
|
| 82 |
-
mask_draw = ImageDraw.Draw(mask)
|
| 83 |
-
mask_draw.rectangle([
|
| 84 |
-
(position[0] + overlap, position[1] + overlap),
|
| 85 |
-
(position[0] + source.width - overlap, position[1] + source.height - overlap)
|
| 86 |
-
], fill=0)
|
| 87 |
-
|
| 88 |
-
# Prepare the image for ControlNet
|
| 89 |
-
cnet_image = background.copy()
|
| 90 |
-
cnet_image.paste(0, (0, 0), mask)
|
| 91 |
-
|
| 92 |
-
for image in pipe(
|
| 93 |
-
prompt_embeds=prompt_embeds,
|
| 94 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
| 95 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 96 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 97 |
-
image=cnet_image,
|
| 98 |
-
):
|
| 99 |
-
yield image, cnet_image
|
| 100 |
-
|
| 101 |
-
image = image.convert("RGBA")
|
| 102 |
-
cnet_image.paste(image, (0, 0), mask)
|
| 103 |
-
|
| 104 |
-
yield background, cnet_image
|
| 105 |
-
"""
|
| 106 |
-
|
| 107 |
@spaces.GPU
|
| 108 |
def infer(image, model_selection, ratio_choice, overlap_width):
|
| 109 |
|
|
@@ -224,6 +177,47 @@ def infer(image, model_selection, ratio_choice, overlap_width):
|
|
| 224 |
cnet_image.paste(image, (0, 0), mask)
|
| 225 |
|
| 226 |
yield background, cnet_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
|
| 229 |
def clear_result():
|
|
@@ -259,7 +253,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 259 |
with gr.Row():
|
| 260 |
ratio = gr.Radio(
|
| 261 |
label="Expected ratio",
|
| 262 |
-
choices=["9:16", "16:9"],
|
| 263 |
value = "9:16"
|
| 264 |
)
|
| 265 |
model_selection = gr.Dropdown(
|
|
@@ -280,9 +274,9 @@ with gr.Blocks(css=css) as demo:
|
|
| 280 |
|
| 281 |
gr.Examples(
|
| 282 |
examples = [
|
| 283 |
-
["./examples/example_1.webp", "RealVisXL V5.0 Lightning", "16
|
| 284 |
["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", "16:9"],
|
| 285 |
-
["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", "
|
| 286 |
],
|
| 287 |
inputs = [input_image, model_selection, ratio]
|
| 288 |
)
|
|
@@ -304,4 +298,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 304 |
)
|
| 305 |
|
| 306 |
|
| 307 |
-
demo.launch(share=False)
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
@spaces.GPU
|
| 61 |
def infer(image, model_selection, ratio_choice, overlap_width):
|
| 62 |
|
|
|
|
| 177 |
cnet_image.paste(image, (0, 0), mask)
|
| 178 |
|
| 179 |
yield background, cnet_image
|
| 180 |
+
|
| 181 |
+
elif ratio_choice == "1:1":
|
| 182 |
+
target_ratio = (1, 1)
|
| 183 |
+
target_size = (1024, 1024)
|
| 184 |
+
overlap = overlap_width
|
| 185 |
+
|
| 186 |
+
if source.width > target_size[0] or source.height > target_size[1]:
|
| 187 |
+
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
|
| 188 |
+
new_width = int(source.width * scale_factor)
|
| 189 |
+
new_height = int(source.height * scale_factor)
|
| 190 |
+
source = source.resize((new_width, new_height), Image.LANCZOS)
|
| 191 |
+
|
| 192 |
+
margin_x = (target_size[0] - source.width) // 2
|
| 193 |
+
margin_y = (target_size[1] - source.height) // 2
|
| 194 |
+
|
| 195 |
+
background = Image.new('RGB', target_size, (255, 255, 255))
|
| 196 |
+
background.paste(source, (margin_x, margin_y))
|
| 197 |
+
|
| 198 |
+
mask = Image.new('L', target_size, 255)
|
| 199 |
+
mask_draw = ImageDraw.Draw(mask)
|
| 200 |
+
mask_draw.rectangle([
|
| 201 |
+
(margin_x + overlap, margin_y + overlap),
|
| 202 |
+
(margin_x + source.width - overlap, margin_y + source.height - overlap)
|
| 203 |
+
], fill=0)
|
| 204 |
+
|
| 205 |
+
cnet_image = background.copy()
|
| 206 |
+
cnet_image.paste(0, (0, 0), mask)
|
| 207 |
+
|
| 208 |
+
for image in pipe(
|
| 209 |
+
prompt_embeds=prompt_embeds,
|
| 210 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 211 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 212 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 213 |
+
image=cnet_image,
|
| 214 |
+
):
|
| 215 |
+
yield cnet_image, image
|
| 216 |
+
|
| 217 |
+
image = image.convert("RGBA")
|
| 218 |
+
cnet_image.paste(image, (0, 0), mask)
|
| 219 |
+
|
| 220 |
+
yield background, cnet_image
|
| 221 |
|
| 222 |
|
| 223 |
def clear_result():
|
|
|
|
| 253 |
with gr.Row():
|
| 254 |
ratio = gr.Radio(
|
| 255 |
label="Expected ratio",
|
| 256 |
+
choices=["1:1", "9:16", "16:9"],
|
| 257 |
value = "9:16"
|
| 258 |
)
|
| 259 |
model_selection = gr.Dropdown(
|
|
|
|
| 274 |
|
| 275 |
gr.Examples(
|
| 276 |
examples = [
|
| 277 |
+
["./examples/example_1.webp", "RealVisXL V5.0 Lightning", "9:16"],
|
| 278 |
["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", "16:9"],
|
| 279 |
+
["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", "1:1"]
|
| 280 |
],
|
| 281 |
inputs = [input_image, model_selection, ratio]
|
| 282 |
)
|
|
|
|
| 298 |
)
|
| 299 |
|
| 300 |
|
| 301 |
+
demo.launch(share=False)
|