Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import trimesh
|
|
| 4 |
import traceback
|
| 5 |
import numpy as np
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
from multiprocessing import Process, Queue
|
| 8 |
|
| 9 |
import torch
|
|
@@ -148,113 +149,124 @@ def py_string_to_mesh_file_safe(py_string, mesh_path):
|
|
| 148 |
if process.is_alive():
|
| 149 |
process.terminate()
|
| 150 |
process.join()
|
| 151 |
-
raise
|
| 152 |
|
| 153 |
if not queue.empty():
|
| 154 |
-
raise
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
def
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
def run_test(in_mesh_path, seed, results):
|
| 171 |
-
mesh = trimesh.load(in_mesh_path)
|
| 172 |
-
mesh.apply_translation(-(mesh.bounds[0] + mesh.bounds[1]) / 2.0)
|
| 173 |
-
mesh.apply_scale(2.0 / max(mesh.extents))
|
| 174 |
-
np.random.seed(seed)
|
| 175 |
-
point_cloud = mesh_to_point_cloud(mesh)
|
| 176 |
-
|
| 177 |
-
pcd_path = '/tmp/pcd.obj'
|
| 178 |
-
trimesh.points.PointCloud(point_cloud[:, :3]).export(pcd_path)
|
| 179 |
-
results.append(pcd_path)
|
| 180 |
-
|
| 181 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 182 |
-
'Qwen/Qwen2-1.5B',
|
| 183 |
-
pad_token='<|im_end|>',
|
| 184 |
-
padding_side='left')
|
| 185 |
-
model = CADRecode.from_pretrained(
|
| 186 |
-
'filapro/cad-recode',
|
| 187 |
-
torch_dtype='auto').eval()
|
| 188 |
-
|
| 189 |
-
input_ids = [tokenizer.pad_token_id] * len(point_cloud) + [tokenizer('<|im_start|>')['input_ids'][0]]
|
| 190 |
-
attention_mask = [-1] * len(point_cloud) + [1]
|
| 191 |
-
batch_ids = run_gpu(model, input_ids, attention_mask, point_cloud, tokenizer.pad_token_id)
|
| 192 |
-
py_string = tokenizer.batch_decode(batch_ids)[0]
|
| 193 |
-
begin = py_string.find('<|im_start|>') + 12
|
| 194 |
-
end = py_string.find('<|endoftext|>')
|
| 195 |
-
py_string = py_string[begin: end]
|
| 196 |
-
results.append(py_string)
|
| 197 |
-
|
| 198 |
-
out_mesh_path = '/tmp/mesh.stl'
|
| 199 |
-
py_string_to_mesh_file_safe(py_string, out_mesh_path)
|
| 200 |
-
results.append(out_mesh_path)
|
| 201 |
|
| 202 |
|
| 203 |
@spaces.GPU(duration=20)
|
| 204 |
-
def
|
| 205 |
-
results, log = list(), str()
|
| 206 |
try:
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
except:
|
| 209 |
-
|
| 210 |
-
return results + [None] * (3 - len(results)) + [log]
|
| 211 |
-
|
| 212 |
|
| 213 |
-
os.environ['TOKENIZERS_PARALLELISM'] = 'False'
|
| 214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
-
with gr.Blocks() as demo:
|
| 217 |
-
with gr.Row():
|
| 218 |
-
gr.Markdown('## CAD-Recode Demo\n'
|
| 219 |
-
'Upload mesh or select from examples and press Run! Mesh ⇾ 256 points ⇾ Python code by CAD-Recode ⇾ CAD model.')
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
)
|
| 227 |
-
|
| 228 |
-
with gr.Row():
|
| 229 |
-
with gr.Column():
|
| 230 |
-
with gr.Row():
|
| 231 |
-
seed_slider = gr.Slider(label='Random Seed', value=42, interactive=True)
|
| 232 |
-
with gr.Row():
|
| 233 |
-
_ = gr.Examples(
|
| 234 |
-
examples=[
|
| 235 |
-
['./data/49215_5368e45e_0000.stl', 42],
|
| 236 |
-
['./data/00882236.stl', 6],
|
| 237 |
-
['./data/User Library-engrenage.stl', 18],
|
| 238 |
-
['./data/00010900.stl', 42],
|
| 239 |
-
['./data/21492_8bd34fc1_0008.stl', 42],
|
| 240 |
-
['./data/00375556.stl', 96],
|
| 241 |
-
['./data/49121_adb01620_0000.stl', 42]],
|
| 242 |
-
example_labels=[
|
| 243 |
-
'fusion360_table1', 'deepcad_star', 'cc3d_gear', 'deepcad_barrels',
|
| 244 |
-
'fusion360_gear', 'deepcad_house', 'fusion360_table2'],
|
| 245 |
-
inputs=[in_model, seed_slider],
|
| 246 |
-
cache_examples=False)
|
| 247 |
-
with gr.Row():
|
| 248 |
-
run_button = gr.Button('Run')
|
| 249 |
-
_ = gr.LoginButton()
|
| 250 |
-
|
| 251 |
-
with gr.Column():
|
| 252 |
-
out_code = gr.Code(language='python', label='3. Generated Python Code', wrap_lines=True, interactive=False)
|
| 253 |
-
|
| 254 |
-
with gr.Column():
|
| 255 |
-
log_textbox = gr.Textbox(label='Log', placeholder='Status: OK', interactive=False)
|
| 256 |
-
|
| 257 |
-
run_button.click(
|
| 258 |
-
run_test_safe, inputs=[in_model, seed_slider], outputs=[point_model, out_code, out_model, log_textbox])
|
| 259 |
|
| 260 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import traceback
|
| 5 |
import numpy as np
|
| 6 |
import gradio as gr
|
| 7 |
+
from functools import partial
|
| 8 |
from multiprocessing import Process, Queue
|
| 9 |
|
| 10 |
import torch
|
|
|
|
| 149 |
if process.is_alive():
|
| 150 |
process.terminate()
|
| 151 |
process.join()
|
| 152 |
+
raise gr.Error('Process is alive after 3 seconds')
|
| 153 |
|
| 154 |
if not queue.empty():
|
| 155 |
+
raise gr.Error(queue.get())
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def run_point_cloud(in_mesh_path, seed):
|
| 159 |
+
try:
|
| 160 |
+
mesh = trimesh.load(in_mesh_path)
|
| 161 |
+
mesh.apply_translation(-(mesh.bounds[0] + mesh.bounds[1]) / 2.0)
|
| 162 |
+
mesh.apply_scale(2.0 / max(mesh.extents))
|
| 163 |
+
np.random.seed(seed)
|
| 164 |
+
point_cloud = mesh_to_point_cloud(mesh)
|
| 165 |
+
pcd_path = '/tmp/pcd.obj'
|
| 166 |
+
trimesh.points.PointCloud(point_cloud[:, :3]).export(pcd_path)
|
| 167 |
+
return point_cloud, pcd_path
|
| 168 |
+
except:
|
| 169 |
+
raise gr.Error(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
|
| 172 |
@spaces.GPU(duration=20)
|
| 173 |
+
def run_cad_recode(point_cloud):
|
|
|
|
| 174 |
try:
|
| 175 |
+
input_ids = [tokenizer.pad_token_id] * len(point_cloud) + [tokenizer('<|im_start|>')['input_ids'][0]]
|
| 176 |
+
attention_mask = [-1] * len(point_cloud) + [1]
|
| 177 |
+
if torch.cuda.is_available():
|
| 178 |
+
model = cad_recode.cuda()
|
| 179 |
+
with torch.no_grad():
|
| 180 |
+
batch_ids = cad_recode.generate(
|
| 181 |
+
input_ids=torch.tensor(input_ids).unsqueeze(0).to(model.device),
|
| 182 |
+
attention_mask=torch.tensor(attention_mask).unsqueeze(0).to(model.device),
|
| 183 |
+
point_cloud=torch.tensor(point_cloud.astype(np.float32)).unsqueeze(0).to(model.device),
|
| 184 |
+
max_new_tokens=768,
|
| 185 |
+
pad_token_id=tokenizer.pad_token_id).cpu()
|
| 186 |
+
py_string = tokenizer.batch_decode(batch_ids)[0]
|
| 187 |
+
begin = py_string.find('<|im_start|>') + 12
|
| 188 |
+
end = py_string.find('<|endoftext|>')
|
| 189 |
+
py_string = py_string[begin: end]
|
| 190 |
+
return py_string, py_string
|
| 191 |
except:
|
| 192 |
+
raise gr.Error(traceback.format_exc())
|
|
|
|
|
|
|
| 193 |
|
|
|
|
| 194 |
|
| 195 |
+
def run_mesh(py_string):
|
| 196 |
+
try:
|
| 197 |
+
out_mesh_path = '/tmp/mesh.stl'
|
| 198 |
+
py_string_to_mesh_file_safe(py_string, out_mesh_path)
|
| 199 |
+
return out_mesh_path
|
| 200 |
+
except:
|
| 201 |
+
raise gr.Error(traceback.format_exc())
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
def run():
|
| 205 |
+
with gr.Blocks() as demo:
|
| 206 |
+
with gr.Row():
|
| 207 |
+
gr.Markdown('## CAD-Recode Demo\n'
|
| 208 |
+
'Upload mesh or select from examples and press Run! Mesh ⇾ 256 points ⇾ Python code by CAD-Recode ⇾ CAD model.')
|
| 209 |
+
|
| 210 |
+
with gr.Row(equal_height=True):
|
| 211 |
+
in_model = gr.Model3D(label='1. Input Mesh', interactive=True)
|
| 212 |
+
point_model = gr.Model3D(label='2. Sampled Point Cloud', display_mode='point_cloud', interactive=False)
|
| 213 |
+
out_model = gr.Model3D(
|
| 214 |
+
label='4. Result CAD Model', interactive=False
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
with gr.Row():
|
| 218 |
+
with gr.Column():
|
| 219 |
+
with gr.Row():
|
| 220 |
+
seed_slider = gr.Slider(label='Random Seed', value=42, interactive=True)
|
| 221 |
+
with gr.Row():
|
| 222 |
+
gr.Examples(
|
| 223 |
+
examples=[
|
| 224 |
+
['./data/49215_5368e45e_0000.stl', 42],
|
| 225 |
+
['./data/00882236.stl', 6],
|
| 226 |
+
['./data/User Library-engrenage.stl', 18],
|
| 227 |
+
['./data/00010900.stl', 42],
|
| 228 |
+
['./data/21492_8bd34fc1_0008.stl', 42],
|
| 229 |
+
['./data/00375556.stl', 53], # todo: 96?
|
| 230 |
+
['./data/49121_adb01620_0000.stl', 42]],
|
| 231 |
+
example_labels=[
|
| 232 |
+
'fusion360_table1', 'deepcad_star', 'cc3d_gear', 'deepcad_barrels',
|
| 233 |
+
'fusion360_gear', 'deepcad_house', 'fusion360_table2'],
|
| 234 |
+
inputs=[in_model, seed_slider],
|
| 235 |
+
cache_examples=False)
|
| 236 |
+
with gr.Row():
|
| 237 |
+
run_button = gr.Button('Run')
|
| 238 |
+
|
| 239 |
+
with gr.Column():
|
| 240 |
+
out_code = gr.Code(language='python', label='3. Generated Python Code', wrap_lines=True, interactive=False)
|
| 241 |
+
|
| 242 |
+
with gr.Column():
|
| 243 |
+
pass
|
| 244 |
+
|
| 245 |
+
state = gr.State()
|
| 246 |
+
run_button.click(
|
| 247 |
+
run_point_cloud,
|
| 248 |
+
inputs=[in_model, seed_slider],
|
| 249 |
+
outputs=[state, point_model]
|
| 250 |
+
).success(
|
| 251 |
+
run_cad_recode,
|
| 252 |
+
inputs=[state],
|
| 253 |
+
outputs=[state, out_code]
|
| 254 |
+
).success(
|
| 255 |
+
run_mesh,
|
| 256 |
+
inputs=[state],
|
| 257 |
+
outputs=[out_model]
|
| 258 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
+
demo.launch(show_error=True)
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 264 |
+
'Qwen/Qwen2-1.5B',
|
| 265 |
+
pad_token='<|im_end|>',
|
| 266 |
+
padding_side='left')
|
| 267 |
+
cad_recode = CADRecode.from_pretrained(
|
| 268 |
+
'filapro/cad-recode',
|
| 269 |
+
torch_dtype='auto').eval()
|
| 270 |
+
|
| 271 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'False'
|
| 272 |
+
run()
|