Spaces:
Running
Running
| import os | |
| from dotenv import load_dotenv | |
| from typing import List, Dict, Any, Optional | |
| import tempfile | |
| import re | |
| import json | |
| import requests | |
| from urllib.parse import urlparse | |
| import pytesseract | |
| from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter | |
| import cmath | |
| import pandas as pd | |
| import uuid | |
| import numpy as np | |
| from code_interpreter import CodeInterpreter | |
| interpreter_instance = CodeInterpreter() | |
| from image_processing import * | |
| """Langraph""" | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_community.document_loaders import WikipediaLoader | |
| from langchain_community.document_loaders import ArxivLoader | |
| from langgraph.prebuilt import ToolNode, tools_condition | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_groq import ChatGroq | |
| from langchain_huggingface import ( | |
| ChatHuggingFace, | |
| HuggingFaceEndpoint, | |
| HuggingFaceEmbeddings, | |
| ) | |
| from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain_core.messages import SystemMessage, HumanMessage | |
| from langchain_core.tools import tool | |
| from langchain.tools.retriever import create_retriever_tool | |
| from supabase.client import Client, create_client | |
| load_dotenv() | |
| ### =============== BROWSER TOOLS =============== ### | |
| def wiki_search(query: str) -> str: | |
| """Search Wikipedia for a query and return maximum 2 results. | |
| Args: | |
| query: The search query.""" | |
| search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ] | |
| ) | |
| return {"wiki_results": formatted_search_docs} | |
| def web_search(query: str) -> str: | |
| """Search Tavily for a query and return maximum 3 results. | |
| Args: | |
| query: The search query.""" | |
| search_docs = TavilySearchResults(max_results=3).invoke(query) | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.get("url", "")}" title="{doc.get("title", "")}"/>\n{doc.get("content", "")}\n</Document>' | |
| for doc in search_docs | |
| ] | |
| ) | |
| return {"web_results": formatted_search_docs} | |
| def arxiv_search(query: str) -> str: | |
| """Search Arxiv for a query and return maximum 3 result. | |
| Args: | |
| query: The search query.""" | |
| search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
| for doc in search_docs | |
| ] | |
| ) | |
| return {"arxiv_results": formatted_search_docs} | |
| ### =============== CODE INTERPRETER TOOLS =============== ### | |
| def execute_code_multilang(code: str, language: str = "python") -> str: | |
| """Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results. | |
| Args: | |
| code (str): The source code to execute. | |
| language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java". | |
| Returns: | |
| A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any). | |
| """ | |
| supported_languages = ["python", "bash", "sql", "c", "java"] | |
| language = language.lower() | |
| if language not in supported_languages: | |
| return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}" | |
| result = interpreter_instance.execute_code(code, language=language) | |
| response = [] | |
| if result["status"] == "success": | |
| response.append(f"✅ Code executed successfully in **{language.upper()}**") | |
| if result.get("stdout"): | |
| response.append( | |
| "\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```" | |
| ) | |
| if result.get("stderr"): | |
| response.append( | |
| "\n**Standard Error (if any):**\n```\n" | |
| + result["stderr"].strip() | |
| + "\n```" | |
| ) | |
| if result.get("result") is not None: | |
| response.append( | |
| "\n**Execution Result:**\n```\n" | |
| + str(result["result"]).strip() | |
| + "\n```" | |
| ) | |
| if result.get("dataframes"): | |
| for df_info in result["dataframes"]: | |
| response.append( | |
| f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**" | |
| ) | |
| df_preview = pd.DataFrame(df_info["head"]) | |
| response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```") | |
| if result.get("plots"): | |
| response.append( | |
| f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)" | |
| ) | |
| else: | |
| response.append(f"❌ Code execution failed in **{language.upper()}**") | |
| if result.get("stderr"): | |
| response.append( | |
| "\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```" | |
| ) | |
| return "\n".join(response) | |
| ### =============== MATHEMATICAL TOOLS =============== ### | |
| def multiply(a: float, b: float) -> float: | |
| """ | |
| Multiplies two numbers. | |
| Args: | |
| a (float): the first number | |
| b (float): the second number | |
| """ | |
| return a * b | |
| def add(a: float, b: float) -> float: | |
| """ | |
| Adds two numbers. | |
| Args: | |
| a (float): the first number | |
| b (float): the second number | |
| """ | |
| return a + b | |
| def subtract(a: float, b: float) -> int: | |
| """ | |
| Subtracts two numbers. | |
| Args: | |
| a (float): the first number | |
| b (float): the second number | |
| """ | |
| return a - b | |
| def divide(a: float, b: float) -> float: | |
| """ | |
| Divides two numbers. | |
| Args: | |
| a (float): the first float number | |
| b (float): the second float number | |
| """ | |
| if b == 0: | |
| raise ValueError("Cannot divided by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| """ | |
| Get the modulus of two numbers. | |
| Args: | |
| a (int): the first number | |
| b (int): the second number | |
| """ | |
| return a % b | |
| def power(a: float, b: float) -> float: | |
| """ | |
| Get the power of two numbers. | |
| Args: | |
| a (float): the first number | |
| b (float): the second number | |
| """ | |
| return a**b | |
| def square_root(a: float) -> float | complex: | |
| """ | |
| Get the square root of a number. | |
| Args: | |
| a (float): the number to get the square root of | |
| """ | |
| if a >= 0: | |
| return a**0.5 | |
| return cmath.sqrt(a) | |
| ### =============== DOCUMENT PROCESSING TOOLS =============== ### | |
| def save_and_read_file(content: str, filename: Optional[str] = None) -> str: | |
| """ | |
| Save content to a file and return the path. | |
| Args: | |
| content (str): the content to save to the file | |
| filename (str, optional): the name of the file. If not provided, a random name file will be created. | |
| """ | |
| temp_dir = tempfile.gettempdir() | |
| if filename is None: | |
| temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir) | |
| filepath = temp_file.name | |
| else: | |
| filepath = os.path.join(temp_dir, filename) | |
| with open(filepath, "w") as f: | |
| f.write(content) | |
| return f"File saved to {filepath}. You can read this file to process its contents." | |
| def download_file_from_url(url: str, filename: Optional[str] = None) -> str: | |
| """ | |
| Download a file from a URL and save it to a temporary location. | |
| Args: | |
| url (str): the URL of the file to download. | |
| filename (str, optional): the name of the file. If not provided, a random name file will be created. | |
| """ | |
| try: | |
| # Parse URL to get filename if not provided | |
| if not filename: | |
| path = urlparse(url).path | |
| filename = os.path.basename(path) | |
| if not filename: | |
| filename = f"downloaded_{uuid.uuid4().hex[:8]}" | |
| # Create temporary file | |
| temp_dir = tempfile.gettempdir() | |
| filepath = os.path.join(temp_dir, filename) | |
| # Download the file | |
| response = requests.get(url, stream=True) | |
| response.raise_for_status() | |
| # Save the file | |
| with open(filepath, "wb") as f: | |
| for chunk in response.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| return f"File downloaded to {filepath}. You can read this file to process its contents." | |
| except Exception as e: | |
| return f"Error downloading file: {str(e)}" | |
| def extract_text_from_image(image_path: str) -> str: | |
| """ | |
| Extract text from an image using OCR library pytesseract (if available). | |
| Args: | |
| image_path (str): the path to the image file. | |
| """ | |
| try: | |
| # Open the image | |
| image = Image.open(image_path) | |
| # Extract text from the image | |
| text = pytesseract.image_to_string(image) | |
| return f"Extracted text from image:\n\n{text}" | |
| except Exception as e: | |
| return f"Error extracting text from image: {str(e)}" | |
| def analyze_csv_file(file_path: str, query: str) -> str: | |
| """ | |
| Analyze a CSV file using pandas and answer a question about it. | |
| Args: | |
| file_path (str): the path to the CSV file. | |
| query (str): Question about the data | |
| """ | |
| try: | |
| # Read the CSV file | |
| df = pd.read_csv(file_path) | |
| # Run various analyses based on the query | |
| result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n" | |
| result += f"Columns: {', '.join(df.columns)}\n\n" | |
| # Add summary statistics | |
| result += "Summary statistics:\n" | |
| result += str(df.describe()) | |
| return result | |
| except Exception as e: | |
| return f"Error analyzing CSV file: {str(e)}" | |
| def analyze_excel_file(file_path: str, query: str) -> str: | |
| """ | |
| Analyze an Excel file using pandas and answer a question about it. | |
| Args: | |
| file_path (str): the path to the Excel file. | |
| query (str): Question about the data | |
| """ | |
| try: | |
| # Read the Excel file | |
| df = pd.read_excel(file_path) | |
| # Run various analyses based on the query | |
| result = ( | |
| f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n" | |
| ) | |
| result += f"Columns: {', '.join(df.columns)}\n\n" | |
| # Add summary statistics | |
| result += "Summary statistics:\n" | |
| result += str(df.describe()) | |
| return result | |
| except Exception as e: | |
| return f"Error analyzing Excel file: {str(e)}" | |
| ### ============== IMAGE PROCESSING AND GENERATION TOOLS =============== ### | |
| def analyze_image(image_base64: str) -> Dict[str, Any]: | |
| """ | |
| Analyze basic properties of an image (size, mode, color analysis, thumbnail preview). | |
| Args: | |
| image_base64 (str): Base64 encoded image string | |
| Returns: | |
| Dictionary with analysis result | |
| """ | |
| try: | |
| img = decode_image(image_base64) | |
| width, height = img.size | |
| mode = img.mode | |
| if mode in ("RGB", "RGBA"): | |
| arr = np.array(img) | |
| avg_colors = arr.mean(axis=(0, 1)) | |
| dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])] | |
| brightness = avg_colors.mean() | |
| color_analysis = { | |
| "average_rgb": avg_colors.tolist(), | |
| "brightness": brightness, | |
| "dominant_color": dominant, | |
| } | |
| else: | |
| color_analysis = {"note": f"No color analysis for mode {mode}"} | |
| thumbnail = img.copy() | |
| thumbnail.thumbnail((100, 100)) | |
| thumb_path = save_image(thumbnail, "thumbnails") | |
| thumbnail_base64 = encode_image(thumb_path) | |
| return { | |
| "dimensions": (width, height), | |
| "mode": mode, | |
| "color_analysis": color_analysis, | |
| "thumbnail": thumbnail_base64, | |
| } | |
| except Exception as e: | |
| return {"error": str(e)} | |
| def transform_image( | |
| image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None | |
| ) -> Dict[str, Any]: | |
| """ | |
| Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale. | |
| Args: | |
| image_base64 (str): Base64 encoded input image | |
| operation (str): Transformation operation | |
| params (Dict[str, Any], optional): Parameters for the operation | |
| Returns: | |
| Dictionary with transformed image (base64) | |
| """ | |
| try: | |
| img = decode_image(image_base64) | |
| params = params or {} | |
| if operation == "resize": | |
| img = img.resize( | |
| ( | |
| params.get("width", img.width // 2), | |
| params.get("height", img.height // 2), | |
| ) | |
| ) | |
| elif operation == "rotate": | |
| img = img.rotate(params.get("angle", 90), expand=True) | |
| elif operation == "crop": | |
| img = img.crop( | |
| ( | |
| params.get("left", 0), | |
| params.get("top", 0), | |
| params.get("right", img.width), | |
| params.get("bottom", img.height), | |
| ) | |
| ) | |
| elif operation == "flip": | |
| if params.get("direction", "horizontal") == "horizontal": | |
| img = img.transpose(Image.FLIP_LEFT_RIGHT) | |
| else: | |
| img = img.transpose(Image.FLIP_TOP_BOTTOM) | |
| elif operation == "adjust_brightness": | |
| img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5)) | |
| elif operation == "adjust_contrast": | |
| img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5)) | |
| elif operation == "blur": | |
| img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2))) | |
| elif operation == "sharpen": | |
| img = img.filter(ImageFilter.SHARPEN) | |
| elif operation == "grayscale": | |
| img = img.convert("L") | |
| else: | |
| return {"error": f"Unknown operation: {operation}"} | |
| result_path = save_image(img) | |
| result_base64 = encode_image(result_path) | |
| return {"transformed_image": result_base64} | |
| except Exception as e: | |
| return {"error": str(e)} | |
| def draw_on_image( | |
| image_base64: str, drawing_type: str, params: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """ | |
| Draw shapes (rectangle, circle, line) or text onto an image. | |
| Args: | |
| image_base64 (str): Base64 encoded input image | |
| drawing_type (str): Drawing type | |
| params (Dict[str, Any]): Drawing parameters | |
| Returns: | |
| Dictionary with result image (base64) | |
| """ | |
| try: | |
| img = decode_image(image_base64) | |
| draw = ImageDraw.Draw(img) | |
| color = params.get("color", "red") | |
| if drawing_type == "rectangle": | |
| draw.rectangle( | |
| [params["left"], params["top"], params["right"], params["bottom"]], | |
| outline=color, | |
| width=params.get("width", 2), | |
| ) | |
| elif drawing_type == "circle": | |
| x, y, r = params["x"], params["y"], params["radius"] | |
| draw.ellipse( | |
| (x - r, y - r, x + r, y + r), | |
| outline=color, | |
| width=params.get("width", 2), | |
| ) | |
| elif drawing_type == "line": | |
| draw.line( | |
| ( | |
| params["start_x"], | |
| params["start_y"], | |
| params["end_x"], | |
| params["end_y"], | |
| ), | |
| fill=color, | |
| width=params.get("width", 2), | |
| ) | |
| elif drawing_type == "text": | |
| font_size = params.get("font_size", 20) | |
| try: | |
| font = ImageFont.truetype("arial.ttf", font_size) | |
| except IOError: | |
| font = ImageFont.load_default() | |
| draw.text( | |
| (params["x"], params["y"]), | |
| params.get("text", "Text"), | |
| fill=color, | |
| font=font, | |
| ) | |
| else: | |
| return {"error": f"Unknown drawing type: {drawing_type}"} | |
| result_path = save_image(img) | |
| result_base64 = encode_image(result_path) | |
| return {"result_image": result_base64} | |
| except Exception as e: | |
| return {"error": str(e)} | |
| def generate_simple_image( | |
| image_type: str, | |
| width: int = 500, | |
| height: int = 500, | |
| params: Optional[Dict[str, Any]] = None, | |
| ) -> Dict[str, Any]: | |
| """ | |
| Generate a simple image (gradient, noise, pattern, chart). | |
| Args: | |
| image_type (str): Type of image | |
| width (int), height (int) | |
| params (Dict[str, Any], optional): Specific parameters | |
| Returns: | |
| Dictionary with generated image (base64) | |
| """ | |
| try: | |
| params = params or {} | |
| if image_type == "gradient": | |
| direction = params.get("direction", "horizontal") | |
| start_color = params.get("start_color", (255, 0, 0)) | |
| end_color = params.get("end_color", (0, 0, 255)) | |
| img = Image.new("RGB", (width, height)) | |
| draw = ImageDraw.Draw(img) | |
| if direction == "horizontal": | |
| for x in range(width): | |
| r = int( | |
| start_color[0] + (end_color[0] - start_color[0]) * x / width | |
| ) | |
| g = int( | |
| start_color[1] + (end_color[1] - start_color[1]) * x / width | |
| ) | |
| b = int( | |
| start_color[2] + (end_color[2] - start_color[2]) * x / width | |
| ) | |
| draw.line([(x, 0), (x, height)], fill=(r, g, b)) | |
| else: | |
| for y in range(height): | |
| r = int( | |
| start_color[0] + (end_color[0] - start_color[0]) * y / height | |
| ) | |
| g = int( | |
| start_color[1] + (end_color[1] - start_color[1]) * y / height | |
| ) | |
| b = int( | |
| start_color[2] + (end_color[2] - start_color[2]) * y / height | |
| ) | |
| draw.line([(0, y), (width, y)], fill=(r, g, b)) | |
| elif image_type == "noise": | |
| noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) | |
| img = Image.fromarray(noise_array, "RGB") | |
| else: | |
| return {"error": f"Unsupported image_type {image_type}"} | |
| result_path = save_image(img) | |
| result_base64 = encode_image(result_path) | |
| return {"generated_image": result_base64} | |
| except Exception as e: | |
| return {"error": str(e)} | |
| def combine_images( | |
| images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None | |
| ) -> Dict[str, Any]: | |
| """ | |
| Combine multiple images (collage, stack, blend). | |
| Args: | |
| images_base64 (List[str]): List of base64 images | |
| operation (str): Combination type | |
| params (Dict[str, Any], optional) | |
| Returns: | |
| Dictionary with combined image (base64) | |
| """ | |
| try: | |
| images = [decode_image(b64) for b64 in images_base64] | |
| params = params or {} | |
| if operation == "stack": | |
| direction = params.get("direction", "horizontal") | |
| if direction == "horizontal": | |
| total_width = sum(img.width for img in images) | |
| max_height = max(img.height for img in images) | |
| new_img = Image.new("RGB", (total_width, max_height)) | |
| x = 0 | |
| for img in images: | |
| new_img.paste(img, (x, 0)) | |
| x += img.width | |
| else: | |
| max_width = max(img.width for img in images) | |
| total_height = sum(img.height for img in images) | |
| new_img = Image.new("RGB", (max_width, total_height)) | |
| y = 0 | |
| for img in images: | |
| new_img.paste(img, (0, y)) | |
| y += img.height | |
| else: | |
| return {"error": f"Unsupported combination operation {operation}"} | |
| result_path = save_image(new_img) | |
| result_base64 = encode_image(result_path) | |
| return {"combined_image": result_base64} | |
| except Exception as e: | |
| return {"error": str(e)} | |
| # load the system prompt from the file | |
| with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
| system_prompt = f.read() | |
| print(system_prompt) | |
| # System message | |
| sys_msg = SystemMessage(content=system_prompt) | |
| # build a retriever | |
| embeddings = HuggingFaceEmbeddings( | |
| model_name="sentence-transformers/all-mpnet-base-v2" | |
| ) # dim=768 | |
| supabase: Client = create_client( | |
| os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_ROLE_KEY") | |
| ) | |
| vector_store = SupabaseVectorStore( | |
| client=supabase, | |
| embedding=embeddings, | |
| table_name="documents2", | |
| query_name="match_documents_2", | |
| ) | |
| create_retriever_tool = create_retriever_tool( | |
| retriever=vector_store.as_retriever(), | |
| name="Question Search", | |
| description="A tool to retrieve similar questions from a vector store.", | |
| ) | |
| tools = [ | |
| web_search, | |
| wiki_search, | |
| arxiv_search, | |
| multiply, | |
| add, | |
| subtract, | |
| divide, | |
| modulus, | |
| power, | |
| square_root, | |
| save_and_read_file, | |
| download_file_from_url, | |
| extract_text_from_image, | |
| analyze_csv_file, | |
| analyze_excel_file, | |
| execute_code_multilang, | |
| analyze_image, | |
| transform_image, | |
| draw_on_image, | |
| generate_simple_image, | |
| combine_images, | |
| ] | |
| # Build graph function | |
| def build_graph(provider: str = "groq"): | |
| """Build the graph""" | |
| # Load environment variables from .env file | |
| if provider == "groq": | |
| # Groq https://console.groq.com/docs/models | |
| llm = ChatGroq(model="qwen/qwen3-32b", temperature=0) | |
| elif provider == "huggingface": | |
| # TODO: Add huggingface endpoint | |
| llm = ChatHuggingFace( | |
| llm=HuggingFaceEndpoint( | |
| repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
| task="text-generation", # for chat‐style use “text-generation” | |
| max_new_tokens=1024, | |
| do_sample=False, | |
| repetition_penalty=1.03, | |
| temperature=0, | |
| ), | |
| verbose=True, | |
| ) | |
| else: | |
| raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.") | |
| # Bind tools to LLM | |
| llm_with_tools = llm.bind_tools(tools) | |
| # Node | |
| def assistant(state: MessagesState): | |
| """Assistant node""" | |
| return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
| def retriever(state: MessagesState): | |
| """Retriever node""" | |
| similar_question = vector_store.similarity_search(state["messages"][0].content) | |
| if similar_question: # Check if the list is not empty | |
| example_msg = HumanMessage( | |
| content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", | |
| ) | |
| return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
| else: | |
| # Handle the case when no similar questions are found | |
| return {"messages": [sys_msg] + state["messages"]} | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| builder.add_edge(START, "retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges( | |
| "assistant", | |
| tools_condition, | |
| ) | |
| builder.add_edge("tools", "assistant") | |
| # Compile graph | |
| return builder.compile() | |
| # test | |
| if __name__ == "__main__": | |
| question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" | |
| graph = build_graph(provider="groq") | |
| messages = [HumanMessage(content=question)] | |
| messages = graph.invoke({"messages": messages}) | |
| for m in messages["messages"]: | |
| m.pretty_print() | |