Spaces:
Sleeping
Sleeping
Felix Konrad
commited on
Commit
·
2ec5753
1
Parent(s):
57c8491
Added proper Cosine-Similarity Computation + Visualization
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import matplotlib.pyplot as plt
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import AutoModel, AutoImageProcessor
|
|
@@ -7,29 +8,68 @@ import torch
|
|
| 7 |
|
| 8 |
# Global state to store loaded model + processor
|
| 9 |
state = {
|
|
|
|
| 10 |
"model": None,
|
| 11 |
"processor": None,
|
| 12 |
"repo_id": None,
|
| 13 |
}
|
| 14 |
|
| 15 |
|
| 16 |
-
def
|
| 17 |
"""
|
| 18 |
-
|
| 19 |
-
Returns a PIL image that can be displayed in Gradio
|
| 20 |
"""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
def load_model(repo_id: str, revision: str = None):
|
|
@@ -44,6 +84,8 @@ def load_model(repo_id: str, revision: str = None):
|
|
| 44 |
model.to("cuda")
|
| 45 |
else:
|
| 46 |
model.to("cpu")
|
|
|
|
|
|
|
| 47 |
# Store in global state
|
| 48 |
state["model"] = model
|
| 49 |
state["processor"] = processor
|
|
@@ -58,10 +100,21 @@ def display_image(image: Image):
|
|
| 58 |
"""
|
| 59 |
return image
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
# Build the Gradio interface
|
| 62 |
with gr.Blocks() as demo:
|
| 63 |
gr.Markdown("# Dynamic ViT Loader Template")
|
| 64 |
|
|
|
|
|
|
|
|
|
|
| 65 |
with gr.Row():
|
| 66 |
repo_input = gr.Textbox(label="Hugging Face model repo ID", placeholder="e.g. google/vit-base-patch16-224")
|
| 67 |
revision_input = gr.Textbox(label="Revision (optional)", placeholder="branch, tag, or commit hash")
|
|
@@ -72,13 +125,13 @@ with gr.Blocks() as demo:
|
|
| 72 |
image_output = gr.Image(label="Displayed Image")
|
| 73 |
|
| 74 |
# cos-sim visualization:
|
| 75 |
-
|
| 76 |
-
sim_array = np.random.normal((128, 128))
|
| 77 |
-
heatmap_img = plot_similarity_heatmap(sim_array)
|
| 78 |
-
gr.Image(value=heatmap_img, label="Cosine Similarity Heatmap")
|
| 79 |
|
| 80 |
# Button clicks / image upload handlers
|
| 81 |
load_btn.click(fn=load_model, inputs=[repo_input, revision_input], outputs=load_status)
|
| 82 |
image_input.change(fn=display_image, inputs=image_input, outputs=image_output)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
| 84 |
demo.launch()
|
|
|
|
| 1 |
import matplotlib.pyplot as plt
|
| 2 |
+
import matplotlib.cm as cm
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
| 5 |
from transformers import AutoModel, AutoImageProcessor
|
|
|
|
| 8 |
|
| 9 |
# Global state to store loaded model + processor
|
| 10 |
state = {
|
| 11 |
+
"model_type": None,
|
| 12 |
"model": None,
|
| 13 |
"processor": None,
|
| 14 |
"repo_id": None,
|
| 15 |
}
|
| 16 |
|
| 17 |
|
| 18 |
+
def similarity_heatmap(image):
|
| 19 |
"""
|
| 20 |
+
...
|
|
|
|
| 21 |
"""
|
| 22 |
+
model, processor = state["model"], state["processor"]
|
| 23 |
+
|
| 24 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 25 |
+
pixel_values = inputs["pixel_values"].to(model.device) # shape: (1, 3, H, W)
|
| 26 |
+
|
| 27 |
+
# get ViT patch size (from model config)
|
| 28 |
+
patch_size = model.config.patch_size # usually 16
|
| 29 |
+
|
| 30 |
+
# Compute patch grid (needed for resizing later)
|
| 31 |
+
H_patch = pixel_values.shape[2] // patch_size
|
| 32 |
+
W_patch = pixel_values.shape[3] // patch_size
|
| 33 |
+
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
outputs = model(pixel_values) # last_hidden_state: (1, seq_len, hidden_dim)
|
| 36 |
+
last_hidden_state = outputs.last_hidden_state
|
| 37 |
+
cls_token = last_hidden_state[:, 0, :] # shape: (1, hidden_dim)
|
| 38 |
+
patch_tokens = last_hidden_state[:, 1:, :] # shape: (1, num_patches, hidden_dim)
|
| 39 |
+
|
| 40 |
+
cls_norm = cls_token / cls_token.norm(dim=-1, keepdim=True)
|
| 41 |
+
patch_norm = patch_tokens / patch_tokens.norm(dim=-1, keepdim=True)
|
| 42 |
+
|
| 43 |
+
cos_sim = torch.einsum("bd,bpd->bp", cls_norm, patch_norm) # shape: (1, num_patches)
|
| 44 |
+
cos_sim = cos_sim.reshape((H_patch, W_patch))
|
| 45 |
+
return np.array(cos_sim)
|
| 46 |
+
|
| 47 |
+
def overlay_cosine_grid_on_image(cos_grid: np.ndarray, image: Image.Image, alpha=0.5, colormap="viridis"):
|
| 48 |
+
"""
|
| 49 |
+
cos_grid: (H_patch, W_patch) numpy array of cosine similarities
|
| 50 |
+
image: PIL.Image
|
| 51 |
+
alpha: blending factor
|
| 52 |
+
colormap: matplotlib colormap name
|
| 53 |
+
"""
|
| 54 |
+
# Normalize cosine values to [0, 1] for colormap
|
| 55 |
+
norm_grid = (cos_grid - cos_grid.min()) / (cos_grid.max() - cos_grid.min() + 1e-8)
|
| 56 |
+
|
| 57 |
+
# Apply colormap
|
| 58 |
+
cmap = cm.get_cmap(colormap)
|
| 59 |
+
heatmap_rgba = cmap(norm_grid) # shape: (H_patch, W_patch, 4)
|
| 60 |
|
| 61 |
+
# Convert to RGB 0-255
|
| 62 |
+
heatmap_rgb = (heatmap_rgba[:, :, :3] * 255).astype(np.uint8)
|
| 63 |
+
heatmap_img = Image.fromarray(heatmap_rgb)
|
|
|
|
| 64 |
|
| 65 |
+
# Resize heatmap to match original image size
|
| 66 |
+
heatmap_resized = heatmap_img.resize(image.size, resample=Image.BILINEAR)
|
| 67 |
+
|
| 68 |
+
# Blend with original image
|
| 69 |
+
blended = Image.blend(image.convert("RGBA"), heatmap_resized.convert("RGBA"), alpha=alpha)
|
| 70 |
+
|
| 71 |
+
return blended
|
| 72 |
+
|
| 73 |
|
| 74 |
|
| 75 |
def load_model(repo_id: str, revision: str = None):
|
|
|
|
| 84 |
model.to("cuda")
|
| 85 |
else:
|
| 86 |
model.to("cpu")
|
| 87 |
+
|
| 88 |
+
model.eval()
|
| 89 |
# Store in global state
|
| 90 |
state["model"] = model
|
| 91 |
state["processor"] = processor
|
|
|
|
| 100 |
"""
|
| 101 |
return image
|
| 102 |
|
| 103 |
+
def visualize_cosine_heatmap(image: Image):
|
| 104 |
+
if state["model"] is None:
|
| 105 |
+
return None # or placeholder image
|
| 106 |
+
|
| 107 |
+
cos_grid = similarity_heatmap(image)
|
| 108 |
+
blended = overlay_cosine_grid_on_image(cos_grid, image)
|
| 109 |
+
return blended
|
| 110 |
+
|
| 111 |
# Build the Gradio interface
|
| 112 |
with gr.Blocks() as demo:
|
| 113 |
gr.Markdown("# Dynamic ViT Loader Template")
|
| 114 |
|
| 115 |
+
# TODO: Add drop-down menu (or something else) for user to allow choosing model type (e.g. DINOv2, Google ViT-Base etc.)
|
| 116 |
+
# ...
|
| 117 |
+
|
| 118 |
with gr.Row():
|
| 119 |
repo_input = gr.Textbox(label="Hugging Face model repo ID", placeholder="e.g. google/vit-base-patch16-224")
|
| 120 |
revision_input = gr.Textbox(label="Revision (optional)", placeholder="branch, tag, or commit hash")
|
|
|
|
| 125 |
image_output = gr.Image(label="Displayed Image")
|
| 126 |
|
| 127 |
# cos-sim visualization:
|
| 128 |
+
heatmap_output = gr.Image(label="Cosine Similarity Heatmap")
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
# Button clicks / image upload handlers
|
| 131 |
load_btn.click(fn=load_model, inputs=[repo_input, revision_input], outputs=load_status)
|
| 132 |
image_input.change(fn=display_image, inputs=image_input, outputs=image_output)
|
| 133 |
|
| 134 |
+
compute_btn = gr.Button("Compute Heatmap")
|
| 135 |
+
compute_btn.click(fn=visualize_cosine_heatmap, inputs=image_input, outputs=heatmap_output)
|
| 136 |
+
|
| 137 |
demo.launch()
|