Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Hugging Face repo ID (from the model page) | |
| MODEL_NAME = "NextGLab/ORANSight_Gemma_2_2B_Instruct" | |
| # Load tokenizer & model | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto" | |
| ) | |
| # --- Helper function --- | |
| def chat(message, history, max_new_tokens=128, temperature=0.7): | |
| """ | |
| message: user input | |
| history: running chat history (list of [user, assistant]) | |
| """ | |
| # Convert Gradio-style history into chat template | |
| messages = [] | |
| for user_msg, bot_msg in history: | |
| messages.append({"role": "user", "content": user_msg}) | |
| messages.append({"role": "assistant", "content": bot_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| # Prepare input using Gemma chat template | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_tensors="pt", | |
| ).to(model.device) | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| do_sample=True, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| # Decode only new tokens (avoid echoing input) | |
| response = tokenizer.decode( | |
| outputs[0][inputs["input_ids"].shape[-1]:], | |
| skip_special_tokens=True | |
| ).strip() | |
| history.append((message, response)) | |
| return history, history, "" | |
| # --- Gradio App --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 🤖 ORANSight Gemma 2 2B Instruct") | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox(show_label=False, placeholder="Type a message...") | |
| send = gr.Button("Send") | |
| clear = gr.Button("Clear Chat") | |
| max_tokens = gr.Slider(50, 512, value=128, step=10, label="Max new tokens") | |
| temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature") | |
| state = gr.State([]) | |
| msg.submit(chat, [msg, state, max_tokens, temperature], [chatbot, state, msg]) | |
| send.click(chat, [msg, state, max_tokens, temperature], [chatbot, state, msg]) | |
| clear.click(lambda: ([], []), None, [chatbot, state]) | |
| if __name__ == "__main__": | |
| demo.launch() |