Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Choose your model repo (from NextGLab) | |
| MODEL_NAME = "NextGLab/ORANSight_Gemma_2_2B_Instruct" | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| torch_dtype="auto", # lets HF decide (fp16/bf16/fp32 depending on GPU) | |
| device_map="auto" # put on GPU if available | |
| ) | |
| # --- Chat function --- | |
| def chat(message, history, max_new_tokens=128, temperature=0.7): | |
| try: | |
| # Convert conversation history into messages | |
| messages = [] | |
| for user_msg, bot_msg in history: | |
| messages.append({"role": "user", "content": user_msg}) | |
| messages.append({"role": "assistant", "content": bot_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| # Apply chat template -> returns tensor of input_ids | |
| input_ids = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_tensors="pt" | |
| ).to(model.device) | |
| # Wrap as dict so generate(**inputs) works | |
| inputs = {"input_ids": input_ids} | |
| # Generate output | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| do_sample=True, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| # Decode new tokens only | |
| response = tokenizer.decode( | |
| outputs[0][input_ids.shape[-1]:], | |
| skip_special_tokens=True | |
| ).strip() | |
| history.append((message, response)) | |
| return history, history, "" | |
| except Exception as e: | |
| import traceback | |
| traceback.print_exc() | |
| return history + [(message, f"⚠️ Error: {str(e)}")], history, "" | |
| # --- Gradio UI --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 🤖 ORANSight Gemma Chat (2B Instruct)") | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox(show_label=False, placeholder="Type a message...") | |
| send = gr.Button("Send") | |
| clear = gr.Button("Clear Chat") | |
| with gr.Row(): | |
| max_tokens = gr.Slider(50, 512, step=10, value=128, label="Max tokens") | |
| temperature = gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature") | |
| state = gr.State([]) | |
| msg.submit(chat, [msg, state, max_tokens, temperature], [chatbot, state, msg]) | |
| send.click(chat, [msg, state, max_tokens, temperature], [chatbot, state, msg]) | |
| clear.click(lambda: ([], []), None, [chatbot, state]) | |
| if __name__ == "__main__": | |
| demo.launch() |