ransight-demo / app.py
fllay's picture
Update app.py
b88fc91 verified
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Choose your model repo (from NextGLab)
MODEL_NAME = "NextGLab/ORANSight_Gemma_2_2B_Instruct"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype="auto", # lets HF decide (fp16/bf16/fp32 depending on GPU)
device_map="auto" # put on GPU if available
)
# --- Chat function ---
def chat(message, history, max_new_tokens=128, temperature=0.7):
try:
# Convert conversation history into messages
messages = []
for user_msg, bot_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
# Apply chat template -> returns tensor of input_ids
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
# Wrap as dict so generate(**inputs) works
inputs = {"input_ids": input_ids}
# Generate output
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode new tokens only
response = tokenizer.decode(
outputs[0][input_ids.shape[-1]:],
skip_special_tokens=True
).strip()
history.append((message, response))
return history, history, ""
except Exception as e:
import traceback
traceback.print_exc()
return history + [(message, f"⚠️ Error: {str(e)}")], history, ""
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# 🤖 ORANSight Gemma Chat (2B Instruct)")
chatbot = gr.Chatbot()
msg = gr.Textbox(show_label=False, placeholder="Type a message...")
send = gr.Button("Send")
clear = gr.Button("Clear Chat")
with gr.Row():
max_tokens = gr.Slider(50, 512, step=10, value=128, label="Max tokens")
temperature = gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature")
state = gr.State([])
msg.submit(chat, [msg, state, max_tokens, temperature], [chatbot, state, msg])
send.click(chat, [msg, state, max_tokens, temperature], [chatbot, state, msg])
clear.click(lambda: ([], []), None, [chatbot, state])
if __name__ == "__main__":
demo.launch()