fllay commited on
Commit
0c0a8bd
·
verified ·
1 Parent(s): 38fb45a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -64
app.py CHANGED
@@ -1,70 +1,63 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
 
31
  temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
- )
62
 
63
  with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  if __name__ == "__main__":
70
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
4
+
5
+ # Pick one of the models from your collection:
6
+ MODEL_NAME = "NextGLab/oransight-20-gemma-2b" # <-- edit this to whichever in your collection
7
+
8
+ @torch.inference_mode()
9
+ def load_model():
10
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
11
+ model = AutoModelForCausalLM.from_pretrained(
12
+ MODEL_NAME,
13
+ device_map="auto",
14
+ torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
15
+ )
16
+ pipe = pipeline(
17
+ "text-generation",
18
+ model=model,
19
+ tokenizer=tokenizer,
20
+ device=model.device,
21
+ )
22
+ return pipe
23
+
24
+ pipe = load_model()
25
+
26
+ # Simple chatbot fn
27
+ def chat(message, history, max_new_tokens=256, temperature=0.7):
28
+ prompt = message
29
+ outputs = pipe(
30
+ prompt,
31
+ max_new_tokens=max_new_tokens,
32
  temperature=temperature,
33
+ do_sample=True,
34
+ pad_token_id=pipe.tokenizer.eos_token_id,
35
+ )
36
+ text = outputs[0]["generated_text"]
37
+ # Hugging Face pipeline often echos input text → remove
38
+ return text[len(prompt):].strip()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  with gr.Blocks() as demo:
41
+ gr.Markdown(f"# 🤖 Oransight‑20‑Gemma Demo\nModel: **{MODEL_NAME}**")
42
+
43
+ chatbot = gr.Chatbot()
44
+ msg = gr.Textbox(label="Your message")
45
+ send = gr.Button("Send")
46
+ clear = gr.Button("Clear")
47
+
48
+ max_tokens = gr.Slider(50, 600, value=256, step=10, label="Max new tokens")
49
+ temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
50
+
51
+ state = gr.State([])
52
+
53
+ def respond(message, history, max_tokens, temperature):
54
+ response = chat(message, history, max_tokens, temperature)
55
+ history.append((message, response))
56
+ return history, history, ""
57
+
58
+ send.click(respond, [msg, state, max_tokens, temperature], [chatbot, state, msg])
59
+ msg.submit(respond, [msg, state, max_tokens, temperature], [chatbot, state, msg])
60
+ clear.click(lambda: ([], []), None, [chatbot, state])
61
 
62
  if __name__ == "__main__":
63
+ demo.launch()