Spaces:
Paused
Paused
File size: 23,483 Bytes
5a4b760 959908d f8931e1 9b1c502 0caa131 f8931e1 5a4b760 e609c83 5a4b760 81ed1ae 5a4b760 0caa131 5a4b760 19d6742 85f9298 31967ea 85f9298 8805e32 5a4b760 85f9298 959908d 85f9298 959908d 85f9298 a14165c e609c83 a14165c 959908d a14165c 85f9298 a14165c 81ed1ae a14165c 85f9298 a14165c 4faa067 5a4b760 274290d 5a4b760 274290d 5a4b760 274290d 5a4b760 274290d 5a4b760 274290d 31967ea 5a4b760 a485141 b6e271b a485141 b6e271b a485141 92cd32c a14165c 8df2c50 92cd32c c1d4f17 a14165c c1d4f17 a14165c 959908d 91d4843 97e9c60 85f9298 81ed1ae df56ead e1f4571 85f9298 df56ead 85f9298 959908d 91d4843 e609c83 a14165c aa4436f a14165c e1f4571 81ed1ae 91d4843 a14165c 91d4843 a14165c b6e271b a14165c 85f9298 58944ea a14165c 58944ea a14165c 58944ea 274290d a14165c 85f9298 a14165c e609c83 85f9298 a14165c 85f9298 a14165c 58944ea a14165c 58944ea 274290d a14165c 274290d 58944ea 92cd32c a14165c 92cd32c a14165c 5a4b760 8df2c50 5a4b760 81ed1ae e1f4571 a14165c 274290d 5a4b760 85f9298 aa4436f 274290d 8df2c50 274290d 5a4b760 4bdb840 fc29fbc 8df2c50 274290d 8df2c50 b6e271b 8df2c50 274290d 8df2c50 274290d 8df2c50 5a4b760 8df2c50 274290d 8df2c50 b6e271b a597ecf 8df2c50 5a02afa 92cd32c 5a4b760 a14165c 959908d b6e271b a14165c 959908d de0b990 92cd32c 8df2c50 92cd32c 6c12bfc b6e271b a14165c b6e271b a14165c b6e271b a14165c 92cd32c b6e271b a14165c 85f9298 6c12bfc 92cd32c 58944ea 92cd32c 274290d 92cd32c 6c12bfc a14165c b112fda a14165c b6e271b 274290d b6e271b a14165c 274290d a14165c 92cd32c b6e271b 92cd32c 85f9298 92cd32c 959908d 5a4b760 b6e271b 5a4b760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import spaces
import os
os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
import torch
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.set_float32_matmul_precision("highest")
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
import cv2
import gc
import subprocess
import paramiko
from image_gen_aux import UpscaleWithModel
import numpy as np
import gradio as gr
import random
import yaml
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil
from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from moviepy.editor import VideoFileClip, concatenate_videoclips
MAX_SEED = np.iinfo(np.int32).max
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
print("Loading SDXL Image-to-Image pipeline...")
#vaeX = AutoencoderKL.from_pretrained('stabilityai/stable-diffusion-xl-refiner-1.0',subfolder='vae')
enhancer_pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
#"stabilityai/stable-diffusion-xl-base-1.0",
"ford442/stable-diffusion-xl-refiner-1.0-bf16",
#torch_dtype=torch.bfloat16,
#variant="fp16",
use_safetensors=True,
requires_aesthetics_score=True,
#vae=None
)
#enhancer_pipeline.vae=vaeX
enhancer_pipeline.vae.set_default_attn_processor()
enhancer_pipeline.to("cpu")
print("SDXL Image-to-Image pipeline loaded successfully.")
config_file_path = "configs/ltxv-13b-0.9.8-dev.yaml"
with open(config_file_path, "r") as file:
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 900
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(repo_id=LTX_REPO, filename=SPATIAL_UPSCALER_FILENAME, local_dir=models_dir, local_dir_use_symlinks=False)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"], precision=PIPELINE_CONFIG_YAML["precision"], text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], sampler=PIPELINE_CONFIG_YAML["sampler"], device="cpu", enhance_prompt=False, prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"], prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"])
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
print("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], device="cpu")
target_inference_device = "cuda"
print(f"Target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance: latent_upsampler_instance.to(target_inference_device)
def upload_to_sftp(local_filepath):
if not all([FTP_HOST, FTP_USER, FTP_PASS, FTP_DIR]):
print("SFTP credentials not set. Skipping upload.")
return
try:
transport = paramiko.Transport((FTP_HOST, 22))
transport.connect(username=FTP_USER, password=FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
remote_filename = os.path.basename(local_filepath)
remote_filepath = os.path.join(FTP_DIR, remote_filename)
print(f"Uploading {local_filepath} to {remote_filepath}...")
sftp.put(local_filepath, remote_filepath)
print("Upload successful.")
sftp.close()
transport.close()
except Exception as e:
print(f"SFTP upload failed: {e}")
gr.Warning(f"SFTP upload failed: {e}")
def calculate_new_dimensions(orig_w, orig_h):
if orig_w == 0 or orig_h == 0: return int(768), int(768)
if orig_w >= orig_h:
new_h, new_w = 768, round((768 * (orig_w / orig_h)) / 32) * 32
else:
new_w, new_h = 768, round((768 * (orig_h / orig_w)) / 32) * 32
return int(max(256, min(new_h, MAX_IMAGE_SIZE))), int(max(256, min(new_w, MAX_IMAGE_SIZE)))
def get_duration(*args, **kwargs):
duration_ui = kwargs.get('duration_ui', 5.0)
if duration_ui > 7.0: return 110
if duration_ui > 5.0: return 100
if duration_ui > 4.0: return 90
if duration_ui > 3.0: return 70
if duration_ui > 2.0: return 60
if duration_ui > 1.5: return 50
if duration_ui > 1.0: return 45
if duration_ui > 0.5: return 30
return 90
@spaces.GPU(duration=30)
def superres_image(image_to_enhance: Image.Image):
print("Doing super-resolution.")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.deterministic = True
torch.set_float32_matmul_precision("medium")
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
upscale_a = upscaler(image_to_enhance, tiling=True, tile_width=256, tile_height=256)
upscale = upscaler(upscale_a, tiling=True, tile_width=256, tile_height=256)
enhanced_image_a = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
enhanced_image = enhanced_image_a.resize((enhanced_image_a.width // 4, enhanced_image_a.height // 4), Image.LANCZOS)
return enhanced_image
@spaces.GPU(duration=20)
def enhance_frame(prompt, image_to_enhance: Image.Image):
try:
print("Moving enhancer pipeline to GPU...")
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
enhancer_pipeline.to("cuda",torch.bfloat16)
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
refine_prompt = prompt +" high detail, sharp focus, 1024x1024, professional"
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.deterministic = True
torch.set_float32_matmul_precision("high")
enhanced_image = enhancer_pipeline(prompt=refine_prompt, image=image_to_enhance, strength=0.07, generator=generator, num_inference_steps=120).images[0]
print("Frame enhancement successful.")
except Exception as e:
print(f"Error during frame enhancement: {e}")
gr.Warning("Frame enhancement failed. Using original frame.")
return image_to_enhance
finally:
print("Moving enhancer pipeline to CPU...")
enhancer_pipeline.to("cpu")
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
return enhanced_image
def use_last_frame_as_input(prompt, video_filepath, do_enhance, do_superres):
if not video_filepath or not os.path.exists(video_filepath):
gr.Warning("No video clip available.")
return None, gr.update()
cap = None
try:
cap = cv2.VideoCapture(video_filepath)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
ret, frame = cap.read()
if not ret: raise ValueError("Failed to read frame.")
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# 1. Immediately yield the original frame to the UI
print("Displaying original last frame...")
yield pil_image, gr.update()
if do_superres:
pil_image = superres_image(pil_image)
if do_enhance:
enhanced_image = enhance_frame(prompt, pil_image)
if do_superres:
enhanced_image = superres_image(enhanced_image)
# 2. Yield the enhanced frame and switch the tab
print("Displaying enhanced frame and switching tab...")
yield enhanced_image, gr.update(selected="i2v_tab")
else:
if do_superres:
pil_image = superres_image(pil_image)
# If not enhancing, just switch the tab
yield pil_image, gr.update(selected="i2v_tab")
except Exception as e:
gr.Error(f"Failed to extract frame: {e}")
return None, gr.update()
finally:
if cap: cap.release()
def stitch_videos(clips_list):
if not clips_list or len(clips_list) < 2:
raise gr.Error("You need at least two clips to stitch them together!")
print(f"Stitching {len(clips_list)} clips...")
try:
video_clips = [VideoFileClip(clip_path) for clip_path in clips_list]
final_clip = concatenate_videoclips(video_clips, method="compose")
final_output_path = os.path.join(tempfile.mkdtemp(), f"stitched_video_{random.randint(10000,99999)}.mp4")
final_clip.write_videofile(final_output_path, codec="libx264", audio=False, threads=4, preset='ultrafast')
for clip in video_clips:
clip.close()
return final_output_path
except Exception as e:
raise gr.Error(f"Failed to stitch videos: {e}")
def clear_clips():
return [], "Clips created: 0", None, None
@spaces.GPU(duration=get_duration)
def generate(prompt, negative_prompt, clips_list, input_image_filepath, input_video_filepath,
height_ui, width_ui, mode, duration_ui, ui_frames_to_use,
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, num_steps, fps,
progress=gr.Progress(track_tqdm=True)):
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.set_float32_matmul_precision("highest")
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
if mode not in ["text-to-video", "image-to-video", "video-to-video"]:
raise gr.Error(f"Invalid mode: {mode}.")
if mode == "image-to-video" and not input_image_filepath:
raise gr.Error("input_image_filepath is required for image-to-video mode")
elif mode == "video-to-video" and not input_video_filepath:
raise gr.Error("input_video_filepath is required for video-to-video mode")
if randomize_seed: seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(round((max(1, round(duration_ui * fps)) - 1.0) / 8.0) * 8 + 1)))
actual_height, actual_width = int(height_ui), int(width_ui)
height_padded, width_padded = ((actual_height - 1) // 32 + 1) * 32, ((actual_width - 1) // 32 + 1) * 32
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
num_frames_padded = max(9, ((actual_num_frames - 2) // 8 + 1) * 8 + 1)
call_kwargs = {"prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded, "num_frames": num_frames_padded, "num_inference_steps": num_steps, "frame_rate": int(fps), "generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)), "output_type": "pt", "conditioning_items": None, "media_items": None, "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"], "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"), "offload_to_cpu": False, "enhance_prompt": False}
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values").lower()
stg_map = {"stg_av": SkipLayerStrategy.AttentionValues, "attention_values": SkipLayerStrategy.AttentionValues, "stg_as": SkipLayerStrategy.AttentionSkip, "attention_skip": SkipLayerStrategy.AttentionSkip, "stg_r": SkipLayerStrategy.Residual, "residual": SkipLayerStrategy.Residual, "stg_t": SkipLayerStrategy.TransformerBlock, "transformer_block": SkipLayerStrategy.TransformerBlock}
call_kwargs["skip_layer_strategy"] = stg_map.get(stg_mode_str, SkipLayerStrategy.AttentionValues)
if mode == "image-to-video":
media_tensor = load_image_to_tensor_with_resize_and_crop(input_image_filepath, actual_height, actual_width)
call_kwargs["conditioning_items"] = [ConditioningItem(torch.nn.functional.pad(media_tensor, padding_values).to(target_inference_device), 0, 1.0)]
elif mode == "video-to-video": call_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=actual_height, width=actual_width, max_frames=int(ui_frames_to_use), padding=padding_values).to(target_inference_device)
if improve_texture_flag and latent_upsampler_instance:
multi_scale_pipeline = LTXMultiScalePipeline(pipeline_instance, latent_upsampler_instance)
pass_args = {"guidance_scale": float(ui_guidance_scale)}
multi_scale_kwargs = {**call_kwargs, "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"], "first_pass": {**PIPELINE_CONFIG_YAML.get("first_pass", {}), **pass_args}, "second_pass": {**PIPELINE_CONFIG_YAML.get("second_pass", {}), **pass_args}}
result_images_tensor = multi_scale_pipeline(**multi_scale_kwargs).images
else:
single_pass_kwargs = {**call_kwargs, "guidance_scale": float(ui_guidance_scale), **PIPELINE_CONFIG_YAML.get("first_pass", {})}
result_images_tensor = pipeline_instance(**single_pass_kwargs).images
if result_images_tensor is None: raise gr.Error("Generation failed.")
pad_l, pad_r, pad_t, pad_b = padding_values
result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_t:(-pad_b or None), pad_l:(-pad_r or None)]
video_np = (np.clip(result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy(), 0, 1) * 255).astype(np.uint8)
output_video_path = os.path.join(tempfile.mkdtemp(), f"output_{random.randint(10000,99999)}.mp4")
with imageio.get_writer(output_video_path, format='FFMPEG', fps=call_kwargs["frame_rate"], codec='libx264', quality=10, pixelformat='yuv420p') as video_writer:
for idx, frame in enumerate(video_np):
progress(idx / len(video_np), desc="Saving video clip...")
video_writer.append_data(frame)
#upload_to_sftp(output_video_path)
updated_clips_list = clips_list + [output_video_path]
counter_text = f"Clips created: {len(updated_clips_list)}"
return output_video_path, seed_ui, gr.update(visible=True), updated_clips_list, counter_text
def update_task_image():
return "image-to-video"
def update_task_text():
return "text-to-video"
def update_task_video():
return "video-to-video"
css="""#col-container{margin:0 auto;max-width:900px;}"""
with gr.Blocks(css=css) as demo:
clips_state = gr.State([])
gr.Markdown("# LTX Video Clip Stitcher")
gr.Markdown("Generate short video clips and stitch them together to create a longer animation.")
with gr.Row():
with gr.Column():
with gr.Tabs() as tabs:
with gr.Tab("image-to-video", id="i2v_tab") as image_tab:
video_i_hidden = gr.Textbox(visible=False);
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"]);
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3);
i2v_button = gr.Button("Generate Image-to-Video Clip", variant="primary")
with gr.Tab("text-to-video", id="t2v_tab") as text_tab:
image_n_hidden = gr.Textbox(visible=False);
video_n_hidden = gr.Textbox(visible=False); t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3);
t2v_button = gr.Button("Generate Text-to-Video Clip", variant="primary")
with gr.Tab("video-to-video", id="v2v_tab") as video_tab:
image_v_hidden = gr.Textbox(visible=False);
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]);
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=120, value=9, step=8, info="Must be N*8+1.");
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3);
v2v_button = gr.Button("Generate Video-to-Video Clip", variant="primary")
duration_input = gr.Slider(label="Clip Duration (seconds)", minimum=1.0, maximum=10.0, value=2.0, step=0.1)
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True)
enhance_checkbox = gr.Checkbox(label="Improve Frame (SDXL Refiner)", value=True)
superres_checkbox = gr.Checkbox(label="Upscale Frame (ClearRealityV1)", value=True)
with gr.Column():
output_video = gr.Video(label="Last Generated Clip", interactive=False)
use_last_frame_button = gr.Button("Use Last Frame as Input Image", visible=False)
with gr.Accordion("Stitching Controls", open=True):
clip_counter_display = gr.Markdown("Clips created: 0")
with gr.Row(): stitch_button = gr.Button("🎬 Stitch All Clips"); clear_button = gr.Button("🗑️ Clear All Clips")
final_video_output = gr.Video(label="Final Stitched Video", interactive=False)
with gr.Accordion("Advanced settings", open=False):
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False);
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
with gr.Row():
seed_input = gr.Number(label="Seed", value=42, precision=0);
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row(visible=False):
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1)
with gr.Row():
height_input = gr.Slider(label="Height", value=1024, step=32, minimum=32, maximum=MAX_IMAGE_SIZE);
width_input = gr.Slider(label="Width", value=1024, step=32, minimum=32, maximum=MAX_IMAGE_SIZE);
num_steps = gr.Slider(label="Steps", value=30, step=1, minimum=1, maximum=420);
fps = gr.Slider(label="FPS", value=30.0, step=1.0, minimum=4.0, maximum=60.0)
def handle_image_upload_for_dims(f, h, w):
if not f: return gr.update(value=h), gr.update(value=w)
img = Image.open(f); new_h, new_w = calculate_new_dimensions(img.width, img.height); return gr.update(value=new_h), gr.update(value=new_w)
def handle_video_upload_for_dims(f, h, w):
if not f or not os.path.exists(str(f)): return gr.update(value=h), gr.update(value=w)
with imageio.get_reader(str(f)) as reader:
meta = reader.get_meta_data(); orig_w, orig_h = meta.get('size', (reader.get_data(0).shape[1], reader.get_data(0).shape[0]));
new_h, new_w = calculate_new_dimensions(orig_w, orig_h); return gr.update(value=new_h), gr.update(value=new_w)
image_i2v.upload(handle_image_upload_for_dims, [image_i2v, height_input, width_input], [height_input, width_input]);
video_v2v.upload(handle_video_upload_for_dims, [video_v2v, height_input, width_input], [height_input, width_input]);
image_tab.select(update_task_image, outputs=[mode]); text_tab.select(update_task_text, outputs=[mode]);
video_tab.select(update_task_video, outputs=[mode])
common_params = [height_input, width_input, mode, duration_input, frames_to_use, seed_input, randomize_seed_input, guidance_scale_input, improve_texture, num_steps, fps]
t2v_inputs = [t2v_prompt, negative_prompt_input, clips_state, image_n_hidden, video_n_hidden] + common_params;
i2v_inputs = [i2v_prompt, negative_prompt_input, clips_state, image_i2v, video_i_hidden] + common_params;
v2v_inputs = [v2v_prompt, negative_prompt_input, clips_state, image_v_hidden, video_v2v] + common_params
gen_outputs = [output_video, seed_input, use_last_frame_button, clips_state, clip_counter_display]
hide_btn = lambda: gr.update(visible=False)
t2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=t2v_inputs, outputs=gen_outputs, api_name="text_to_video")
i2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=i2v_inputs, outputs=gen_outputs, api_name="image_to_video")
v2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=v2v_inputs, outputs=gen_outputs, api_name="video_to_video")
use_last_frame_button.click(fn=use_last_frame_as_input, inputs=[i2v_prompt,output_video,enhance_checkbox, superres_checkbox], outputs=[image_i2v, tabs])
stitch_button.click(fn=stitch_videos, inputs=[clips_state], outputs=[final_video_output])
clear_button.click(fn=clear_clips, outputs=[clips_state, clip_counter_display, output_video, final_video_output])
if __name__ == "__main__":
if os.path.exists(models_dir): print(f"Model directory: {Path(models_dir).resolve()}")
demo.queue().launch(debug=True, share=False, mcp_server=True) |