Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,53 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
]
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
| 4 |
|
| 5 |
+
# Dataset loading (replace with your desired dataset)
|
| 6 |
+
dataset = load_dataset("meta-llama/Meta-Llama-3.1-8B-Instruct-evals", "Meta-Llama-3.1-8B-Instruct-evals__arc_challenge__details")
|
|
|
|
| 7 |
|
| 8 |
+
# Model and tokenizer (replace with desired model)
|
| 9 |
+
model_name = "mradermacher/llama-3-8b-gpt-4o-GGUF"
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
|
| 13 |
+
# Training function (optional)
|
| 14 |
+
def train_model(epochs=3):
|
| 15 |
+
training_args = TrainingArguments(
|
| 16 |
+
output_dir="output", # Adjust output directory
|
| 17 |
+
per_device_train_batch_size=8, # Adjust batch size
|
| 18 |
+
num_train_epochs=epochs,
|
| 19 |
+
evaluation_strategy="epoch", # Adjust evaluation strategy
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
trainer = Trainer(
|
| 23 |
+
model=model,
|
| 24 |
+
args=training_args,
|
| 25 |
+
train_dataset=dataset,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
trainer.train()
|
| 29 |
+
print("Model training complete!")
|
| 30 |
+
|
| 31 |
+
# Text generation function
|
| 32 |
+
def generate_text(prompt):
|
| 33 |
+
try:
|
| 34 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 35 |
+
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
| 36 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 37 |
+
except Exception as e:
|
| 38 |
+
return f"Error generating text: {e}"
|
| 39 |
+
|
| 40 |
+
# Gradio interface for text generation
|
| 41 |
+
interface = gr.Interface(
|
| 42 |
+
fn=generate_text,
|
| 43 |
+
inputs="text",
|
| 44 |
+
outputs="text",
|
| 45 |
+
title="Text Generation with Trained Model",
|
| 46 |
+
description="Enter a prompt and get creative text generated by the model.",
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Train the model before launching the interface (optional)
|
| 50 |
+
train_model() # Uncomment to train before launching
|
| 51 |
+
|
| 52 |
+
# Launch the Gradio interface
|
| 53 |
+
interface.launch()
|