Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,7 @@ import tempfile
|
|
| 8 |
from twilio.rest import Client
|
| 9 |
import os
|
| 10 |
import spaces
|
|
|
|
| 11 |
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
|
| 12 |
import logging
|
| 13 |
|
|
@@ -51,32 +52,32 @@ else:
|
|
| 51 |
def transcribe(audio: tuple[int, np.ndarray], transformers_convo: list[dict], gradio_convo: list[dict]):
|
| 52 |
segment = AudioSegment(audio[1].tobytes(), frame_rate=audio[0], sample_width=audio[1].dtype.itemsize, channels=1)
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
|
| 82 |
with gr.Blocks() as demo:
|
|
|
|
| 8 |
from twilio.rest import Client
|
| 9 |
import os
|
| 10 |
import spaces
|
| 11 |
+
import uuid
|
| 12 |
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
|
| 13 |
import logging
|
| 14 |
|
|
|
|
| 52 |
def transcribe(audio: tuple[int, np.ndarray], transformers_convo: list[dict], gradio_convo: list[dict]):
|
| 53 |
segment = AudioSegment(audio[1].tobytes(), frame_rate=audio[0], sample_width=audio[1].dtype.itemsize, channels=1)
|
| 54 |
|
| 55 |
+
name = str(uuid.uuid4()) + ".mp3"
|
| 56 |
+
segment.export(name, format="mp3")
|
| 57 |
+
transformers_convo.append({"role": "user", "content": [{"type": "audio", "audio_url": name}]})
|
| 58 |
+
gradio_convo.append({"role": "assistant", "content": gr.Audio(value=name)})
|
| 59 |
+
text = processor.apply_chat_template(transformers_convo, add_generation_prompt=True, tokenize=False)
|
| 60 |
+
audios = []
|
| 61 |
+
for message in transformers_convo:
|
| 62 |
+
if isinstance(message["content"], list):
|
| 63 |
+
for ele in message["content"]:
|
| 64 |
+
if ele["type"] == "audio":
|
| 65 |
+
audios.append(librosa.load(
|
| 66 |
+
BytesIO(open(ele['audio_url'], "rb").read()),
|
| 67 |
+
sr=processor.feature_extractor.sampling_rate)[0]
|
| 68 |
+
)
|
| 69 |
+
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
|
| 70 |
+
inputs = dict(**inputs)
|
| 71 |
+
inputs["input_ids"] = inputs["input_ids"].to("cuda:0")
|
| 72 |
+
|
| 73 |
+
generate_ids = model.generate(**inputs, max_length=256)
|
| 74 |
+
generate_ids = generate_ids[:, inputs["input_ids"].size(1):]
|
| 75 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 76 |
+
print("response", response)
|
| 77 |
+
transformers_convo.append({"role": "assistant", "content": response})
|
| 78 |
+
gradio_convo.append({"role": "assistant", "content": response})
|
| 79 |
+
|
| 80 |
+
yield AdditionalOutputs(transformers_convo, gradio_convo)
|
| 81 |
|
| 82 |
|
| 83 |
with gr.Blocks() as demo:
|