Spaces:
Runtime error
Runtime error
add audio cloning functionality (test)
Browse files- app.py +171 -116
- requirements.txt +2 -0
- src/generate.py +46 -0
- src/process.py +88 -0
- src/prompts.py +47 -0
- src/tts.py +43 -0
app.py
CHANGED
|
@@ -1,118 +1,128 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import random
|
| 3 |
-
import re
|
| 4 |
-
import difflib
|
| 5 |
-
import torch
|
| 6 |
-
from functools import lru_cache
|
| 7 |
-
from transformers import pipeline
|
| 8 |
-
|
| 9 |
-
# ------------------- Sentence Bank (customize freely) -------------------
|
| 10 |
-
SENTENCE_BANK = [
|
| 11 |
-
"The quick brown fox jumps over the lazy dog.",
|
| 12 |
-
"I promise to speak clearly and at a steady pace.",
|
| 13 |
-
"Open source makes AI more transparent and inclusive.",
|
| 14 |
-
"Hugging Face Spaces make demos easy to share.",
|
| 15 |
-
"Today the weather in Berlin is pleasantly cool.",
|
| 16 |
-
"Privacy and transparency should go hand in hand.",
|
| 17 |
-
"Please generate a new sentence for me to read.",
|
| 18 |
-
"Machine learning can amplify or reduce inequality.",
|
| 19 |
-
"Responsible AI requires participation from everyone.",
|
| 20 |
-
"This microphone test checks my pronunciation accuracy.",
|
| 21 |
-
]
|
| 22 |
-
|
| 23 |
-
# ------------------- Utilities -------------------
|
| 24 |
-
def normalize_text(t: str) -> str:
|
| 25 |
-
# English-only normalization: lowercase, keep letters/digits/' and -
|
| 26 |
-
t = t.lower()
|
| 27 |
-
t = re.sub(r"[^a-z0-9'\-]+", " ", t)
|
| 28 |
-
t = re.sub(r"\s+", " ", t).strip()
|
| 29 |
-
return t
|
| 30 |
-
|
| 31 |
-
def similarity_and_diff(ref: str, hyp: str):
|
| 32 |
-
"""Return similarity ratio (0..1) and HTML diff highlighting changes."""
|
| 33 |
-
ref_tokens = ref.split()
|
| 34 |
-
hyp_tokens = hyp.split()
|
| 35 |
-
sm = difflib.SequenceMatcher(a=ref_tokens, b=hyp_tokens)
|
| 36 |
-
ratio = sm.ratio()
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
out = []
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
if op == "equal":
|
| 41 |
-
out.append(" " +
|
| 42 |
elif op == "delete":
|
| 43 |
-
out.append(
|
| 44 |
-
' <span style="background:#ffe0e0;text-decoration:line-through;">'
|
| 45 |
-
+ " ".join(ref_tokens[i1:i2]) + "</span>"
|
| 46 |
-
)
|
| 47 |
elif op == "insert":
|
| 48 |
-
out.append(
|
| 49 |
-
' <span style="background:#e0ffe0;">'
|
| 50 |
-
+ " ".join(hyp_tokens[j1:j2]) + "</span>"
|
| 51 |
-
)
|
| 52 |
elif op == "replace":
|
| 53 |
-
out.append(
|
| 54 |
-
|
| 55 |
-
+ " ".join(ref_tokens[i1:i2]) + "</span>"
|
| 56 |
-
)
|
| 57 |
-
out.append(
|
| 58 |
-
' <span style="background:#e0ffe0;">'
|
| 59 |
-
+ " ".join(hyp_tokens[j1:j2]) + "</span>"
|
| 60 |
-
)
|
| 61 |
html = '<div style="line-height:1.6;font-size:1rem;">' + "".join(out).strip() + "</div>"
|
| 62 |
-
return
|
| 63 |
-
|
| 64 |
-
@lru_cache(maxsize=2)
|
| 65 |
-
def get_asr(model_id: str, device_preference: str):
|
| 66 |
-
"""Cache an ASR pipeline. device_preference: 'auto'|'cpu'|'cuda'."""
|
| 67 |
-
if device_preference == "cuda" and torch.cuda.is_available():
|
| 68 |
-
device = 0
|
| 69 |
-
elif device_preference == "auto":
|
| 70 |
-
device = 0 if torch.cuda.is_available() else -1
|
| 71 |
-
else:
|
| 72 |
-
device = -1
|
| 73 |
-
return pipeline(
|
| 74 |
-
"automatic-speech-recognition",
|
| 75 |
-
model=model_id, # use English-only Whisper models (.en)
|
| 76 |
-
device=device,
|
| 77 |
-
chunk_length_s=30,
|
| 78 |
-
return_timestamps=False,
|
| 79 |
-
)
|
| 80 |
|
| 81 |
-
def gen_sentence():
|
| 82 |
-
return random.choice(SENTENCE_BANK)
|
| 83 |
|
| 84 |
-
def
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# ------------------- Core Check (English-only) -------------------
|
| 89 |
-
def
|
|
|
|
| 90 |
if not target_sentence:
|
| 91 |
-
return "
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
f"
|
| 112 |
-
|
| 113 |
-
|
|
|
|
| 114 |
|
| 115 |
-
return hyp_raw, score, diff_html, summary
|
| 116 |
|
| 117 |
# ------------------- UI -------------------
|
| 118 |
with gr.Blocks(title="Say the Sentence (English)") as demo:
|
|
@@ -122,25 +132,28 @@ with gr.Blocks(title="Say the Sentence (English)") as demo:
|
|
| 122 |
1) Generate a sentence.
|
| 123 |
2) Record yourself reading it.
|
| 124 |
3) Transcribe & check your accuracy.
|
|
|
|
| 125 |
"""
|
| 126 |
)
|
| 127 |
|
| 128 |
with gr.Row():
|
| 129 |
-
target = gr.Textbox(label="Target sentence", interactive=False,
|
|
|
|
| 130 |
|
| 131 |
with gr.Row():
|
| 132 |
btn_gen = gr.Button("🎲 Generate sentence", variant="primary")
|
| 133 |
btn_clear = gr.Button("🧹 Clear")
|
| 134 |
|
| 135 |
with gr.Row():
|
| 136 |
-
audio = gr.Audio(sources=["microphone"], type="filepath",
|
|
|
|
| 137 |
|
| 138 |
with gr.Accordion("Advanced settings", open=False):
|
| 139 |
model_id = gr.Dropdown(
|
| 140 |
choices=[
|
| 141 |
-
"openai/whisper-tiny.en",
|
| 142 |
-
"openai/whisper-base.en",
|
| 143 |
-
"distil-whisper/distil-small.en"
|
| 144 |
],
|
| 145 |
value="openai/whisper-tiny.en",
|
| 146 |
label="ASR model (English only)",
|
|
@@ -150,26 +163,68 @@ with gr.Blocks(title="Say the Sentence (English)") as demo:
|
|
| 150 |
value="auto",
|
| 151 |
label="Device preference"
|
| 152 |
)
|
| 153 |
-
pass_threshold = gr.Slider(0.50, 1.00, value=0.85, step=0.01,
|
|
|
|
| 154 |
|
| 155 |
with gr.Row():
|
| 156 |
btn_check = gr.Button("✅ Transcribe & Check", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
with gr.Row():
|
| 159 |
-
|
| 160 |
with gr.Row():
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
# Events
|
| 166 |
-
btn_gen.click(fn=gen_sentence, outputs=target)
|
| 167 |
-
btn_clear.click(fn=clear_all, outputs=[target, hyp_out, score_out, diff_out, summary_out])
|
| 168 |
btn_check.click(
|
| 169 |
-
fn=
|
| 170 |
inputs=[audio, target, model_id, device_pref, pass_threshold],
|
| 171 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
)
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|
| 175 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
import src.generate as generate
|
| 4 |
+
import src.process as process
|
| 5 |
+
import src.tts as tts
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# ------------------- UI printing functions -------------------
|
| 9 |
+
def clear_all():
|
| 10 |
+
# target, user_transcript, score_html, diff_html, result_html,
|
| 11 |
+
# tts_text, clone_status, tts_audio
|
| 12 |
+
return "", "", "", "", "", "", "", None
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def make_result_html(pass_threshold, passed, ratio):
|
| 16 |
+
"""Returns summary and score label."""
|
| 17 |
+
summary = (
|
| 18 |
+
f"✅ Correct (≥ {int(pass_threshold * 100)}%)"
|
| 19 |
+
if passed else
|
| 20 |
+
f"❌ Not a match (need ≥ {int(pass_threshold * 100)}%)"
|
| 21 |
+
)
|
| 22 |
+
score = f"Similarity: {ratio * 100:.1f}%"
|
| 23 |
+
return summary, score
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def make_alignment_html(ref_tokens, hyp_tokens, alignments):
|
| 27 |
+
"""Returns HTML showing alignment between target and recognized user audio."""
|
| 28 |
out = []
|
| 29 |
+
no_match_html = ' <span style="background:#ffe0e0;text-decoration:line-through;">'
|
| 30 |
+
match_html = ' <span style="background:#e0ffe0;">'
|
| 31 |
+
for span in alignments:
|
| 32 |
+
op, i1, i2, j1, j2 = span
|
| 33 |
+
ref_string = " ".join(ref_tokens[i1:i2])
|
| 34 |
+
hyp_string = " ".join(hyp_tokens[j1:j2])
|
| 35 |
if op == "equal":
|
| 36 |
+
out.append(" " + ref_string)
|
| 37 |
elif op == "delete":
|
| 38 |
+
out.append(no_match_html + ref_string + "</span>")
|
|
|
|
|
|
|
|
|
|
| 39 |
elif op == "insert":
|
| 40 |
+
out.append(match_html + hyp_string + "</span>")
|
|
|
|
|
|
|
|
|
|
| 41 |
elif op == "replace":
|
| 42 |
+
out.append(no_match_html + ref_string + "</span>")
|
| 43 |
+
out.append(match_html + hyp_string + "</span>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
html = '<div style="line-height:1.6;font-size:1rem;">' + "".join(out).strip() + "</div>"
|
| 45 |
+
return html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
def make_html(sentence_match):
|
| 49 |
+
"""Build diff + results HTML."""
|
| 50 |
+
diff_html = make_alignment_html(sentence_match.target_tokens,
|
| 51 |
+
sentence_match.user_tokens,
|
| 52 |
+
sentence_match.alignments)
|
| 53 |
+
result_html, score_html = make_result_html(sentence_match.pass_threshold,
|
| 54 |
+
sentence_match.passed,
|
| 55 |
+
sentence_match.ratio)
|
| 56 |
+
return score_html, result_html, diff_html
|
| 57 |
+
|
| 58 |
|
| 59 |
# ------------------- Core Check (English-only) -------------------
|
| 60 |
+
def get_user_transcript(audio_path: gr.Audio, target_sentence: str, model_id: str, device_pref: str) -> (str, str):
|
| 61 |
+
"""ASR for the input audio and basic validation."""
|
| 62 |
if not target_sentence:
|
| 63 |
+
return "Please generate a sentence first.", ""
|
| 64 |
+
if audio_path is None:
|
| 65 |
+
return "Please start, record, then stop the audio recording before trying to transcribe.", ""
|
| 66 |
+
|
| 67 |
+
user_transcript = process.run_asr(audio_path, model_id, device_pref)
|
| 68 |
+
if isinstance(user_transcript, Exception):
|
| 69 |
+
return f"Transcription failed: {user_transcript}", ""
|
| 70 |
+
return "", user_transcript
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def transcribe_check(audio_path, target_sentence, model_id, device_pref, pass_threshold):
|
| 74 |
+
"""Transcribe user audio, compute match, and render results."""
|
| 75 |
+
error_msg, user_transcript = get_user_transcript(audio_path, target_sentence, model_id, device_pref)
|
| 76 |
+
if error_msg:
|
| 77 |
+
score_html = ""
|
| 78 |
+
diff_html = ""
|
| 79 |
+
result_html = error_msg
|
| 80 |
+
else:
|
| 81 |
+
sentence_match = process.SentenceMatcher(target_sentence, user_transcript, pass_threshold)
|
| 82 |
+
score_html, result_html, diff_html = make_html(sentence_match)
|
| 83 |
+
return user_transcript, score_html, result_html, diff_html
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# ------------------- Voice cloning gate -------------------
|
| 87 |
+
def clone_if_pass(
|
| 88 |
+
audio_path, # ref voice (the same recorded clip)
|
| 89 |
+
target_sentence, # sentence user was supposed to say
|
| 90 |
+
user_transcript, # what ASR heard
|
| 91 |
+
tts_text, # what we want to synthesize (in cloned voice)
|
| 92 |
+
pass_threshold, # must meet or exceed this
|
| 93 |
+
tts_model_id, # e.g., "coqui/XTTS-v2"
|
| 94 |
+
tts_language, # e.g., "en"
|
| 95 |
+
):
|
| 96 |
+
"""
|
| 97 |
+
If user correctly read the target (>= threshold), clone their voice from the
|
| 98 |
+
recorded audio and speak 'tts_text'. Otherwise, refuse.
|
| 99 |
+
"""
|
| 100 |
+
# Basic validations
|
| 101 |
+
if audio_path is None:
|
| 102 |
+
return None, "Record audio first (reference voice is required)."
|
| 103 |
+
if not target_sentence:
|
| 104 |
+
return None, "Generate a target sentence first."
|
| 105 |
+
if not user_transcript:
|
| 106 |
+
return None, "Transcribe first to verify the sentence."
|
| 107 |
+
if not tts_text:
|
| 108 |
+
return None, "Enter the sentence to synthesize."
|
| 109 |
+
|
| 110 |
+
# Recompute pass/fail to avoid relying on UI state
|
| 111 |
+
sm = process.SentenceMatcher(target_sentence, user_transcript, pass_threshold)
|
| 112 |
+
if not sm.passed:
|
| 113 |
+
return None, (
|
| 114 |
+
f"❌ Cloning blocked: your reading did not reach the threshold "
|
| 115 |
+
f"({sm.ratio*100:.1f}% < {int(pass_threshold*100)}%)."
|
| 116 |
+
)
|
| 117 |
|
| 118 |
+
# Run zero-shot cloning
|
| 119 |
+
out = tts.run_tts_clone(audio_path, tts_text, model_id=tts_model_id, language=tts_language)
|
| 120 |
+
if isinstance(out, Exception):
|
| 121 |
+
return None, f"Voice cloning failed: {out}"
|
| 122 |
+
sr, wav = out
|
| 123 |
+
# Gradio Audio can take a tuple (sr, np.array)
|
| 124 |
+
return (sr, wav), f"✅ Cloned and synthesized with {tts_model_id} ({tts_language})."
|
| 125 |
|
|
|
|
| 126 |
|
| 127 |
# ------------------- UI -------------------
|
| 128 |
with gr.Blocks(title="Say the Sentence (English)") as demo:
|
|
|
|
| 132 |
1) Generate a sentence.
|
| 133 |
2) Record yourself reading it.
|
| 134 |
3) Transcribe & check your accuracy.
|
| 135 |
+
4) If matched, clone your voice to speak any sentence you enter.
|
| 136 |
"""
|
| 137 |
)
|
| 138 |
|
| 139 |
with gr.Row():
|
| 140 |
+
target = gr.Textbox(label="Target sentence", interactive=False,
|
| 141 |
+
placeholder="Click 'Generate sentence'")
|
| 142 |
|
| 143 |
with gr.Row():
|
| 144 |
btn_gen = gr.Button("🎲 Generate sentence", variant="primary")
|
| 145 |
btn_clear = gr.Button("🧹 Clear")
|
| 146 |
|
| 147 |
with gr.Row():
|
| 148 |
+
audio = gr.Audio(sources=["microphone"], type="filepath",
|
| 149 |
+
label="Record your voice")
|
| 150 |
|
| 151 |
with gr.Accordion("Advanced settings", open=False):
|
| 152 |
model_id = gr.Dropdown(
|
| 153 |
choices=[
|
| 154 |
+
"openai/whisper-tiny.en",
|
| 155 |
+
"openai/whisper-base.en",
|
| 156 |
+
"distil-whisper/distil-small.en",
|
| 157 |
],
|
| 158 |
value="openai/whisper-tiny.en",
|
| 159 |
label="ASR model (English only)",
|
|
|
|
| 163 |
value="auto",
|
| 164 |
label="Device preference"
|
| 165 |
)
|
| 166 |
+
pass_threshold = gr.Slider(0.50, 1.00, value=0.85, step=0.01,
|
| 167 |
+
label="Match threshold")
|
| 168 |
|
| 169 |
with gr.Row():
|
| 170 |
btn_check = gr.Button("✅ Transcribe & Check", variant="primary")
|
| 171 |
+
with gr.Row():
|
| 172 |
+
user_transcript = gr.Textbox(label="Transcription", interactive=False)
|
| 173 |
+
with gr.Row():
|
| 174 |
+
score_html = gr.Label(label="Score")
|
| 175 |
+
result_html = gr.Label(label="Result")
|
| 176 |
+
diff_html = gr.HTML(
|
| 177 |
+
label="Word-level diff (red = expected but missing / green = extra or replacement)")
|
| 178 |
+
|
| 179 |
+
gr.Markdown("## 🔁 Voice cloning (gated)")
|
| 180 |
+
with gr.Row():
|
| 181 |
+
tts_text = gr.Textbox(
|
| 182 |
+
label="Text to synthesize (voice clone)",
|
| 183 |
+
placeholder="Type the sentence you want the cloned voice to say",
|
| 184 |
+
)
|
| 185 |
+
with gr.Row():
|
| 186 |
+
tts_model_id = gr.Dropdown(
|
| 187 |
+
choices=[
|
| 188 |
+
"coqui/XTTS-v2",
|
| 189 |
+
# add others if you like, e.g. "myshell-ai/MeloTTS"
|
| 190 |
+
],
|
| 191 |
+
value="coqui/XTTS-v2",
|
| 192 |
+
label="TTS (voice cloning) model",
|
| 193 |
+
)
|
| 194 |
+
tts_language = gr.Dropdown(
|
| 195 |
+
choices=["en", "de", "fr", "es", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh"],
|
| 196 |
+
value="en",
|
| 197 |
+
label="Language",
|
| 198 |
+
)
|
| 199 |
|
| 200 |
with gr.Row():
|
| 201 |
+
btn_clone = gr.Button("🔁 Clone voice (if passed)", variant="secondary")
|
| 202 |
with gr.Row():
|
| 203 |
+
tts_audio = gr.Audio(label="Cloned speech output", interactive=False)
|
| 204 |
+
clone_status = gr.Label(label="Cloning status")
|
| 205 |
+
|
| 206 |
+
# -------- Events --------
|
| 207 |
+
# Use pre-specified sentence bank by default
|
| 208 |
+
btn_gen.click(fn=generate.gen_sentence_set, outputs=target)
|
| 209 |
+
# Or use LLM generation:
|
| 210 |
+
# btn_gen.click(fn=generate.gen_sentence_llm, outputs=target)
|
| 211 |
+
|
| 212 |
+
btn_clear.click(
|
| 213 |
+
fn=clear_all,
|
| 214 |
+
outputs=[target, user_transcript, score_html, result_html, diff_html, tts_text, clone_status, tts_audio]
|
| 215 |
+
)
|
| 216 |
|
|
|
|
|
|
|
|
|
|
| 217 |
btn_check.click(
|
| 218 |
+
fn=transcribe_check,
|
| 219 |
inputs=[audio, target, model_id, device_pref, pass_threshold],
|
| 220 |
+
outputs=[user_transcript, score_html, result_html, diff_html]
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
btn_clone.click(
|
| 224 |
+
fn=clone_if_pass,
|
| 225 |
+
inputs=[audio, target, user_transcript, tts_text, pass_threshold, tts_model_id, tts_language],
|
| 226 |
+
outputs=[tts_audio, clone_status],
|
| 227 |
)
|
| 228 |
|
| 229 |
if __name__ == "__main__":
|
| 230 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -3,3 +3,5 @@ transformers>=4.44.0
|
|
| 3 |
torch>=2.2.0
|
| 4 |
accelerate>=0.33.0
|
| 5 |
sentencepiece>=0.2.0
|
|
|
|
|
|
|
|
|
| 3 |
torch>=2.2.0
|
| 4 |
accelerate>=0.33.0
|
| 5 |
sentencepiece>=0.2.0
|
| 6 |
+
numpy
|
| 7 |
+
|
src/generate.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
from transformers import pipeline, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
import src.process as process
|
| 6 |
+
|
| 7 |
+
# You can choose to use either:
|
| 8 |
+
# (1) a list of pre-specified sentences, in SENTENCE_BANK
|
| 9 |
+
# (2) an LLM-generated sentence.
|
| 10 |
+
# SENTENCE_BANK is used in the `gen_sentence_set` function.
|
| 11 |
+
# LLM generation is used in the `gen_sentence_llm` function.
|
| 12 |
+
|
| 13 |
+
# ------------------- Sentence Bank (customize freely) -------------------
|
| 14 |
+
SENTENCE_BANK = [
|
| 15 |
+
"The quick brown fox jumps over the lazy dog.",
|
| 16 |
+
"I promise to speak clearly and at a steady pace.",
|
| 17 |
+
"Open source makes AI more transparent and inclusive.",
|
| 18 |
+
"Hugging Face Spaces make demos easy to share.",
|
| 19 |
+
"Today the weather in Berlin is pleasantly cool.",
|
| 20 |
+
"Privacy and transparency should go hand in hand.",
|
| 21 |
+
"Please generate a new sentence for me to read.",
|
| 22 |
+
"Machine learning can amplify or reduce inequality.",
|
| 23 |
+
"Responsible AI requires participation from everyone.",
|
| 24 |
+
"This microphone test checks my pronunciation accuracy.",
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def gen_sentence_llm():
|
| 29 |
+
"""Generates a sentence using an LLM.
|
| 30 |
+
Returns:
|
| 31 |
+
Normalized text string to display in the UI.
|
| 32 |
+
"""
|
| 33 |
+
prompt = ""
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
| 35 |
+
generator = pipeline('text-generation', model='gpt2')
|
| 36 |
+
result = generator(prompt, stop_strings=[".", ], num_return_sequences=1,
|
| 37 |
+
tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id)
|
| 38 |
+
display_text = process.normalize_text(result[0]["generated_text"],
|
| 39 |
+
lower=False)
|
| 40 |
+
return display_text
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def gen_sentence_set():
|
| 44 |
+
"""Returns a sentence for the user to say using a prespecified set of options."""
|
| 45 |
+
return random.choice(SENTENCE_BANK)
|
| 46 |
+
|
src/process.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import difflib
|
| 2 |
+
import re
|
| 3 |
+
from functools import lru_cache
|
| 4 |
+
|
| 5 |
+
import gradio.components.audio as gr_audio
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# ------------------- Utilities -------------------
|
| 11 |
+
def normalize_text(t: str, lower: bool = True) -> str:
|
| 12 |
+
"""For normalizing LLM-generated and human-generated strings.
|
| 13 |
+
For LLMs, this removes extraneous quote marks and spaces."""
|
| 14 |
+
# English-only normalization: lowercase, keep letters/digits/' and -
|
| 15 |
+
if lower:
|
| 16 |
+
t = t.lower()
|
| 17 |
+
# TODO: Previously was re.sub(r"[^a-z0-9'\-]+", " ", t); discuss normalizing for LLMs too.
|
| 18 |
+
t = re.sub(r"[^a-zA-Z0-9'\-.,]+", " ", t)
|
| 19 |
+
t = re.sub(r"\s+", " ", t).strip()
|
| 20 |
+
return t
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@lru_cache(maxsize=2)
|
| 24 |
+
def get_asr_pipeline(model_id: str, device_preference: str) -> pipeline:
|
| 25 |
+
"""Cache an ASR pipeline.
|
| 26 |
+
Parameters:
|
| 27 |
+
model_id: String of desired ASR model.
|
| 28 |
+
device_preference: String of desired device for ASR processing, "cuda", "cpu", or "auto".
|
| 29 |
+
Returns:
|
| 30 |
+
transformers.pipeline ASR component.
|
| 31 |
+
"""
|
| 32 |
+
if device_preference == "cuda" and torch.cuda.is_available():
|
| 33 |
+
device = 0
|
| 34 |
+
elif device_preference == "auto":
|
| 35 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 36 |
+
else:
|
| 37 |
+
device = -1
|
| 38 |
+
return pipeline(
|
| 39 |
+
"automatic-speech-recognition",
|
| 40 |
+
model=model_id, # use English-only Whisper models (.en)
|
| 41 |
+
device=device,
|
| 42 |
+
chunk_length_s=30,
|
| 43 |
+
return_timestamps=False,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
def run_asr(audio_path: gr_audio, model_id: str, device_pref: str) -> str | Exception:
|
| 47 |
+
"""Returns the recognized user utterance from the input audio stream.
|
| 48 |
+
Parameters:
|
| 49 |
+
audio_path: gradio.Audio component.
|
| 50 |
+
model_id: String of desired ASR model.
|
| 51 |
+
device_preference: String of desired device for ASR processing, "cuda", "cpu", or "auto".
|
| 52 |
+
Returns:
|
| 53 |
+
hyp_raw: Recognized user utterance.
|
| 54 |
+
"""
|
| 55 |
+
asr = get_asr_pipeline(model_id, device_pref)
|
| 56 |
+
try:
|
| 57 |
+
# IMPORTANT: For English-only Whisper (.en), do NOT pass language/task args.
|
| 58 |
+
result = asr(audio_path)
|
| 59 |
+
hyp_raw = result["text"].strip()
|
| 60 |
+
except Exception as e:
|
| 61 |
+
return e
|
| 62 |
+
return hyp_raw
|
| 63 |
+
|
| 64 |
+
def similarity_and_diff(ref_tokens: list, hyp_tokens: list) -> (float, list[str, int, int, int]):
|
| 65 |
+
"""
|
| 66 |
+
Returns:
|
| 67 |
+
ratio: Similarity ratio (0..1).
|
| 68 |
+
opcodes: List of differences between target and recognized user utterance.
|
| 69 |
+
"""
|
| 70 |
+
sm = difflib.SequenceMatcher(a=ref_tokens, b=hyp_tokens)
|
| 71 |
+
ratio = sm.ratio()
|
| 72 |
+
opcodes = sm.get_opcodes()
|
| 73 |
+
return ratio, opcodes
|
| 74 |
+
|
| 75 |
+
class SentenceMatcher:
|
| 76 |
+
"""Class for keeping track of (target sentence, user utterance) match features."""
|
| 77 |
+
def __init__(self, target_sentence, user_transcript, pass_threshold):
|
| 78 |
+
self.target_sentence: str = target_sentence
|
| 79 |
+
self.user_transcript: str = user_transcript
|
| 80 |
+
self.pass_threshold: float = pass_threshold
|
| 81 |
+
self.target_tokens: list = normalize_text(target_sentence).split()
|
| 82 |
+
self.user_tokens: list = normalize_text(user_transcript).split()
|
| 83 |
+
self.ratio: float
|
| 84 |
+
self.alignments: list
|
| 85 |
+
self.ratio, self.alignments = similarity_and_diff(self.target_tokens,
|
| 86 |
+
self.user_tokens)
|
| 87 |
+
self.passed: bool = self.ratio >= self.pass_threshold
|
| 88 |
+
|
src/prompts.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# src/utils/prompts.py
|
| 2 |
+
|
| 3 |
+
def get_consent_generation_prompt(audio_model_name: str, short_prompt: bool = False) -> str:
|
| 4 |
+
"""
|
| 5 |
+
Returns a text prompt instructing the model to generate a natural-sounding
|
| 6 |
+
consent sentence for voice cloning with the specified model.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
audio_model_name (str): Name of the audio model to mention in the prompt.
|
| 10 |
+
short_prompt (bool): If True, returns a concise one-line prompt suitable
|
| 11 |
+
for direct model input. If False (default), returns the full detailed prompt.
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
str: The prompt text.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
if short_prompt:
|
| 18 |
+
return (
|
| 19 |
+
f"Generate one natural, spoken-style English sentence (10–20 words) in which a person "
|
| 20 |
+
f"clearly gives informed consent to use their voice for generating synthetic audio "
|
| 21 |
+
f"with the model {audio_model_name}. The sentence should sound conversational, include "
|
| 22 |
+
f"a clear consent phrase like 'I give my consent' or 'I agree', mention {audio_model_name} "
|
| 23 |
+
f"by name, and be phonetically varied but neutral in tone. Output only the final sentence."
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
return f"""
|
| 27 |
+
Generate a short, natural-sounding English sentence (10–20 words) that a person could say aloud
|
| 28 |
+
to clearly state their informed consent to use their voice for generating synthetic audio with
|
| 29 |
+
an AI model called {audio_model_name}.
|
| 30 |
+
|
| 31 |
+
The sentence should:
|
| 32 |
+
- Sound natural and conversational, not like legal text.
|
| 33 |
+
- Explicitly include a consent phrase, such as “I give my consent,” “I agree,” or “I allow.”
|
| 34 |
+
- Mention the model name ({audio_model_name}) clearly in the sentence.
|
| 35 |
+
- Include a neutral descriptive clause before or after the consent phrase to add phonetic variety
|
| 36 |
+
(e.g., “The weather today is bright and calm” or “This recording is made clearly and freely.”)
|
| 37 |
+
- Have a neutral or polite tone (no emotional extremes).
|
| 38 |
+
- Be comfortable to read aloud and phonetically rich, covering diverse vowels and consonants naturally.
|
| 39 |
+
- Be self-contained, so the full sentence can serve as an independent audio clip.
|
| 40 |
+
|
| 41 |
+
Examples of structure to follow:
|
| 42 |
+
- “The weather is clear and warm today. I give my consent to use my voice for generating audio with the model {audio_model_name}.”
|
| 43 |
+
- “I give my consent to use my voice for generating audio with the model {audio_model_name}. This statement is made freely and clearly.”
|
| 44 |
+
- “Good afternoon. I agree to the use of my recorded voice for audio generation with the model {audio_model_name}.”
|
| 45 |
+
|
| 46 |
+
The output should be a single, natural sentence ready to be spoken aloud for recording purposes.
|
| 47 |
+
"""
|
src/tts.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# src/tts.py
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
from typing import Tuple, Union
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
|
| 8 |
+
# We use the text-to-speech pipeline with XTTS v2 (zero-shot cloning)
|
| 9 |
+
# Example forward params: {"speaker_wav": "/path/to/ref.wav", "language": "en"}
|
| 10 |
+
|
| 11 |
+
def get_tts_pipeline(model_id: str):
|
| 12 |
+
"""
|
| 13 |
+
Create a TTS pipeline for the given model.
|
| 14 |
+
XTTS v2 works well for zero-shot cloning and is available on the Hub.
|
| 15 |
+
"""
|
| 16 |
+
# NOTE: Add device selection similar to ASR if needed
|
| 17 |
+
return pipeline("text-to-speech", model=model_id)
|
| 18 |
+
|
| 19 |
+
def run_tts_clone(
|
| 20 |
+
ref_audio_path: str,
|
| 21 |
+
text_to_speak: str,
|
| 22 |
+
model_id: str = "coqui/XTTS-v2",
|
| 23 |
+
language: str = "en",
|
| 24 |
+
) -> Union[Tuple[int, np.ndarray], Exception]:
|
| 25 |
+
"""
|
| 26 |
+
Synthesize 'text_to_speak' in the cloned voice from 'ref_audio_path'.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
(sampling_rate, waveform) on success, or Exception on failure.
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
tts = get_tts_pipeline(model_id)
|
| 33 |
+
result = tts(
|
| 34 |
+
text_to_speak,
|
| 35 |
+
forward_params={"speaker_wav": ref_audio_path, "language": language},
|
| 36 |
+
)
|
| 37 |
+
# transformers TTS returns dict like: {"audio": {"array": np.ndarray, "sampling_rate": 24000}}
|
| 38 |
+
audio = result["audio"]
|
| 39 |
+
sr = int(audio["sampling_rate"])
|
| 40 |
+
wav = audio["array"].astype(np.float32)
|
| 41 |
+
return sr, wav
|
| 42 |
+
except Exception as e:
|
| 43 |
+
return e
|