Spaces:
Running
on
Zero
Running
on
Zero
| # PyTorch 2.8 (temporary hack) | |
| import os | |
| os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces') | |
| # Actual demo code | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| from PIL import Image | |
| from diffusers import FluxKontextPipeline | |
| from diffusers.utils import load_image | |
| MAX_SEED = np.iinfo(np.int32).max | |
| pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") | |
| def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress()): | |
| """ | |
| Perform image editing using the FLUX.1 Kontext pipeline. | |
| This function takes an input image and a text prompt to generate a modified version | |
| of the image based on the provided instructions. It uses the FLUX.1 Kontext model | |
| for contextual image editing tasks. | |
| Args: | |
| input_image (PIL.Image.Image): The input image to be edited. Will be converted | |
| to RGB format if not already in that format. | |
| prompt (str): Text description of the desired edit to apply to the image. | |
| Examples: "Remove glasses", "Add a hat", "Change background to beach". | |
| seed (int, optional): Random seed for reproducible generation. Defaults to 42. | |
| Must be between 0 and MAX_SEED (2^31 - 1). | |
| randomize_seed (bool, optional): If True, generates a random seed instead of | |
| using the provided seed value. Defaults to False. | |
| guidance_scale (float, optional): Controls how closely the model follows the | |
| prompt. Higher values mean stronger adherence to the prompt but may reduce | |
| image quality. Range: 1.0-10.0. Defaults to 2.5. | |
| steps (int, optional): Controls how many steps to run the diffusion model for. | |
| Range: 1-30. Defaults to 28. | |
| progress (gr.Progress, optional): Gradio progress tracker for monitoring | |
| generation progress. Defaults to gr.Progress(track_tqdm=True). | |
| Returns: | |
| tuple: A 3-tuple containing: | |
| - PIL.Image.Image: The generated/edited image | |
| - int: The seed value used for generation (useful when randomize_seed=True) | |
| - gr.update: Gradio update object to make the reuse button visible | |
| Example: | |
| >>> edited_image, used_seed, button_update = infer( | |
| ... input_image=my_image, | |
| ... prompt="Add sunglasses", | |
| ... seed=123, | |
| ... randomize_seed=False, | |
| ... guidance_scale=2.5 | |
| ... ) | |
| """ | |
| progress(0,desc="Starting") | |
| def callback_fn(pipe, step, timestep, callback_kwargs): | |
| print(f"[Step {step}] Timestep: {timestep}") | |
| progress_value = (step+1.0)/steps | |
| progress(progress_value, desc=f"Image generating, {step + 1}/{steps} steps") | |
| return callback_kwargs | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if input_image: | |
| input_image = input_image.convert("RGB") | |
| image = pipe( | |
| image=input_image, | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| width = input_image.size[0], | |
| height = input_image.size[1], | |
| num_inference_steps=steps, | |
| callback_on_step_end=callback_fn, | |
| generator=torch.Generator().manual_seed(seed), | |
| ).images[0] | |
| else: | |
| image = pipe( | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=steps, | |
| callback_on_step_end=callback_fn, | |
| generator=torch.Generator().manual_seed(seed), | |
| ).images[0] | |
| progress(1, desc="Complete") | |
| return image, seed, gr.Button(visible=True) | |
| def infer_example(input_image, prompt): | |
| image, seed, _ = infer(input_image, prompt) | |
| return image, seed | |
| title = "# Image to Image AI Editor" | |
| description = "Your Image-to-Image AI editor. Just describe changes (‘brighter, remove object, cartoon style’) and let the AI handle the rest—no Photoshop skills needed. Try the stable version at [Image to Image AI Generator](https://www.image2image.ai)." | |
| with gr.Blocks() as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Upload the image for editing", type="pil") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=10, | |
| step=0.1, | |
| value=2.5, | |
| ) | |
| steps = gr.Slider( | |
| label="Steps", | |
| minimum=1, | |
| maximum=30, | |
| value=28, | |
| step=1 | |
| ) | |
| with gr.Column(): | |
| result = gr.Image(label="Result", show_label=False, interactive=False) | |
| reuse_button = gr.Button("Reuse this image", visible=False) | |
| examples = gr.Examples( | |
| examples=[ | |
| ["flowers.png", "turn the flowers into sunflowers"], | |
| ["monster.png", "make this monster ride a skateboard on the beach"], | |
| ["cat.png", "make this cat happy"] | |
| ], | |
| inputs=[input_image, prompt], | |
| outputs=[result, seed], | |
| fn=infer_example, | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn = infer, | |
| inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps], | |
| outputs = [result, seed, reuse_button] | |
| ) | |
| reuse_button.click( | |
| fn = lambda image: image, | |
| inputs = [result], | |
| outputs = [input_image] | |
| ) | |
| demo.launch(mcp_server=True) |