Spaces:
Sleeping
Sleeping
ftshijt
commited on
Commit
·
37d87af
1
Parent(s):
0223e0e
use docker for setup
Browse files- Dockerfile +42 -0
- app.py +30 -234
- postBuild +0 -41
- requirements.txt +1 -2
- universal_metrics.yaml +158 -0
Dockerfile
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
# Install system dependencies
|
| 6 |
+
RUN apt-get update && apt-get install -y \
|
| 7 |
+
git \
|
| 8 |
+
build-essential \
|
| 9 |
+
libsndfile1 \
|
| 10 |
+
ffmpeg \
|
| 11 |
+
&& apt-get clean \
|
| 12 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
+
|
| 14 |
+
# Copy requirements file
|
| 15 |
+
COPY requirements.txt .
|
| 16 |
+
|
| 17 |
+
# Install Python dependencies
|
| 18 |
+
RUN pip install --no-cache-dir -U pip && \
|
| 19 |
+
pip install --no-cache-dir -r requirements.txt
|
| 20 |
+
|
| 21 |
+
# Clone VERSA repository
|
| 22 |
+
RUN git clone https://github.com/shinjiwlab/versa.git && \
|
| 23 |
+
cd versa && \
|
| 24 |
+
pip install -e .
|
| 25 |
+
|
| 26 |
+
# Set up data directories
|
| 27 |
+
RUN mkdir -p /app/data/configs /app/data/uploads /app/data/results
|
| 28 |
+
|
| 29 |
+
# Copy universal metrics YAML file
|
| 30 |
+
COPY universal_metrics.yaml /app/data/configs/
|
| 31 |
+
|
| 32 |
+
# Copy application code
|
| 33 |
+
COPY app.py .
|
| 34 |
+
|
| 35 |
+
# Create installation complete indicator
|
| 36 |
+
RUN touch /app/versa/.installation_complete
|
| 37 |
+
|
| 38 |
+
# Set environment variables
|
| 39 |
+
ENV PYTHONUNBUFFERED=1
|
| 40 |
+
|
| 41 |
+
# Run the application
|
| 42 |
+
CMD ["python", "app.py"]
|
app.py
CHANGED
|
@@ -11,253 +11,38 @@ import matplotlib.pyplot as plt
|
|
| 11 |
import time
|
| 12 |
from pathlib import Path
|
| 13 |
|
| 14 |
-
# VERSA paths - these
|
| 15 |
-
VERSA_ROOT =
|
| 16 |
VERSA_BIN = os.path.join(VERSA_ROOT, "versa", "bin", "scorer.py")
|
| 17 |
VERSA_CONFIG_DIR = os.path.join(VERSA_ROOT, "egs")
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# Check if VERSA is installed
|
| 20 |
def check_versa_installation():
|
| 21 |
"""Check if VERSA is properly installed"""
|
| 22 |
if not os.path.exists(VERSA_ROOT):
|
| 23 |
-
return False, "VERSA directory not found.
|
| 24 |
|
| 25 |
if not os.path.exists(VERSA_BIN):
|
| 26 |
-
return False, "VERSA binary not found.
|
| 27 |
|
| 28 |
if not os.path.exists(VERSA_CONFIG_DIR):
|
| 29 |
-
return False, "VERSA configuration directory not found.
|
| 30 |
|
| 31 |
-
# Check if the .installation_complete file exists (created by
|
| 32 |
if not os.path.exists(os.path.join(VERSA_ROOT, ".installation_complete")):
|
| 33 |
-
return False, "VERSA installation indicator file not found.
|
| 34 |
|
| 35 |
return True, "VERSA is properly installed."
|
| 36 |
|
| 37 |
# Check VERSA installation at startup
|
| 38 |
versa_installed, versa_status = check_versa_installation()
|
| 39 |
-
|
| 40 |
-
print(f"WARNING: {versa_status}")
|
| 41 |
-
print("The application may not function correctly without VERSA.")
|
| 42 |
-
else:
|
| 43 |
-
print("VERSA installation verified successfully.")
|
| 44 |
-
|
| 45 |
-
# Create data directory if it doesn't exist
|
| 46 |
-
DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data")
|
| 47 |
-
UPLOAD_DIR = os.path.join(DATA_DIR, "uploads")
|
| 48 |
-
RESULTS_DIR = os.path.join(DATA_DIR, "results")
|
| 49 |
-
CONFIG_DIR = os.path.join(DATA_DIR, "configs")
|
| 50 |
-
|
| 51 |
-
for directory in [DATA_DIR, UPLOAD_DIR, RESULTS_DIR, CONFIG_DIR]:
|
| 52 |
-
os.makedirs(directory, exist_ok=True)
|
| 53 |
-
|
| 54 |
-
# Save the default universal metrics YAML file
|
| 55 |
-
UNIVERSAL_METRICS_YAML = os.path.join(CONFIG_DIR, "universal_metrics.yaml")
|
| 56 |
-
if not os.path.exists(UNIVERSAL_METRICS_YAML):
|
| 57 |
-
with open(UNIVERSAL_METRICS_YAML, 'w') as f:
|
| 58 |
-
f.write("""# Universal Metrics Configuration for Versa
|
| 59 |
-
# This file contains the configuration for various universal metrics used in speech quality assessment.
|
| 60 |
-
|
| 61 |
-
# visqol metric
|
| 62 |
-
# -- visqol: visual quality of speech
|
| 63 |
-
- name: visqol
|
| 64 |
-
model: default
|
| 65 |
-
|
| 66 |
-
# Word error rate with ESPnet-OWSM model
|
| 67 |
-
# More model_tag can be from the ESPnet huggingface https://huggingface.co/espnet .
|
| 68 |
-
# The default model is `espnet/owsm_v3.1_ebf`.
|
| 69 |
-
# --lid: the nbest language tag
|
| 70 |
-
- name: lid
|
| 71 |
-
model_tag: default
|
| 72 |
-
nbest: 1
|
| 73 |
-
|
| 74 |
-
# nomad (reference-based) metric
|
| 75 |
-
# -- nomad: nomad reference-based model
|
| 76 |
-
- name: nomad
|
| 77 |
-
model_cache: versa_cache/nomad_pt-models
|
| 78 |
-
|
| 79 |
-
# srmr related metrics
|
| 80 |
-
# -- srmr: speech-to-reverberation modulation energy ratio
|
| 81 |
-
- name: srmr
|
| 82 |
-
n_cochlear_filters: 23
|
| 83 |
-
low_freq: 125
|
| 84 |
-
min_cf: 4
|
| 85 |
-
max_cf: 128
|
| 86 |
-
fast: True
|
| 87 |
-
norm: False
|
| 88 |
-
|
| 89 |
-
# Emotion similarity calculated based on emo2vec
|
| 90 |
-
# --emo2vec_similarity: the emotion similarity with emo2vec
|
| 91 |
-
- name: emo2vec_similarity
|
| 92 |
-
|
| 93 |
-
# noresqa related metrics
|
| 94 |
-
# -- noresqa: non-matching reference based speech quality assessment
|
| 95 |
-
- name: noresqa
|
| 96 |
-
metric_type: 1 #0: NORESQA-score, 1: NORESQA-MOS
|
| 97 |
-
|
| 98 |
-
# pysepm related metrics
|
| 99 |
-
# -- pysepm_fwsegsnr: frequency-weighted segmental SNR
|
| 100 |
-
# -- pysepm_llr: Log likelihood ratio
|
| 101 |
-
# -- pysepm_wss: weighted spectral slope
|
| 102 |
-
# -- pysepm_cd: cepstral distance objective speech quality measure
|
| 103 |
-
# -- pysepm_Csig, pysepm_Cbak, pysepm_Covl: composite objective speech quality
|
| 104 |
-
# -- pysepm_csii_high, pysepm_csii_mid, pysepm_csii_low: coherence and speech intelligibility index
|
| 105 |
-
# -- pysepm_ncm: normalized-covariance measure
|
| 106 |
-
- name: pysepm
|
| 107 |
-
|
| 108 |
-
# nisqa score for speech quality assessment
|
| 109 |
-
# -- nisqa_mos_pred: NISQA MOS prediction
|
| 110 |
-
# -- nisqa_noi_pred: NISQA noise prediction
|
| 111 |
-
# -- nisqa_dis_pred: NISQA distortion prediction
|
| 112 |
-
# -- nisqa_col_pred: NISQA color prediction
|
| 113 |
-
# --nisqa_loud_pred: NISQA loudness prediction
|
| 114 |
-
# NOTE(jiatong): pretrain model can be downloaded with `./tools/setup_nisqa.sh`
|
| 115 |
-
- name: nisqa
|
| 116 |
-
nisqa_model_path: ./tools/NISQA/weights/nisqa.tar
|
| 117 |
-
|
| 118 |
-
# discrete speech metrics
|
| 119 |
-
# -- speech_bert: speech bert score
|
| 120 |
-
# -- speech_bleu: speech bleu score
|
| 121 |
-
# -- speech_token_distance: speech token distance score
|
| 122 |
-
- name: discrete_speech
|
| 123 |
-
|
| 124 |
-
# mcd f0 related metrics
|
| 125 |
-
# -- mcd: mel cepstral distortion
|
| 126 |
-
# -- f0_corr: f0 correlation
|
| 127 |
-
# -- f0_rmse: f0 root mean square error
|
| 128 |
-
- name: mcd_f0
|
| 129 |
-
f0min: 40
|
| 130 |
-
f0max: 800
|
| 131 |
-
mcep_shift: 5
|
| 132 |
-
mcep_fftl: 1024
|
| 133 |
-
mcep_dim: 39
|
| 134 |
-
mcep_alpha: 0.466
|
| 135 |
-
seq_mismatch_tolerance: 0.1
|
| 136 |
-
power_threshold: -20
|
| 137 |
-
dtw: false
|
| 138 |
-
|
| 139 |
-
# An overall model on MOS-bench from Sheet toolkit
|
| 140 |
-
# --sheet_ssqa: the mos prediction from sheet_ssqa
|
| 141 |
-
- name: sheet_ssqa
|
| 142 |
-
|
| 143 |
-
# pesq related metrics
|
| 144 |
-
# -- pesq: perceptual evaluation of speech quality
|
| 145 |
-
- name: pesq
|
| 146 |
-
|
| 147 |
-
# stoi related metrics
|
| 148 |
-
# -- stoi: short-time objective intelligibility
|
| 149 |
-
- name: stoi
|
| 150 |
-
|
| 151 |
-
# pseudo subjective metrics
|
| 152 |
-
# -- utmos: UT-MOS score
|
| 153 |
-
# -- dnsmos: DNS-MOS score
|
| 154 |
-
# -- plcmos: PLC-MOS score
|
| 155 |
-
# -- aecmos: AEC-MOS score
|
| 156 |
-
- name: pseudo_mos
|
| 157 |
-
predictor_types: ["utmos", "dnsmos", "plcmos", "singmos", "utmosv2"]
|
| 158 |
-
predictor_args:
|
| 159 |
-
utmos:
|
| 160 |
-
fs: 16000
|
| 161 |
-
dnsmos:
|
| 162 |
-
fs: 16000
|
| 163 |
-
plcmos:
|
| 164 |
-
fs: 16000
|
| 165 |
-
singmos:
|
| 166 |
-
fs: 16000
|
| 167 |
-
utmosv2:
|
| 168 |
-
fs: 16000
|
| 169 |
-
|
| 170 |
-
# Word error rate with OpenAI-Whisper model
|
| 171 |
-
# -- whisper_wer: word error rate of openai-whisper
|
| 172 |
-
- name: whisper_wer
|
| 173 |
-
model_tag: default
|
| 174 |
-
beam_size: 1
|
| 175 |
-
text_cleaner: whisper_basic
|
| 176 |
-
|
| 177 |
-
# scoreq (reference-based) metric
|
| 178 |
-
# -- scoreq_ref: scoreq reference-based model
|
| 179 |
-
- name: scoreq_ref
|
| 180 |
-
data_domain: natrual
|
| 181 |
-
model_cache: versa_cache/scoreq_pt-models
|
| 182 |
-
|
| 183 |
-
# scoreq (non-reference-based) metric
|
| 184 |
-
# -- scoreq_nr: scoreq non-reference-based model
|
| 185 |
-
- name: scoreq_nr
|
| 186 |
-
data_domain: natural
|
| 187 |
-
model_cache: versa_cache/scoreq_pt-models
|
| 188 |
-
|
| 189 |
-
# Speech Enhancement-based Metrics
|
| 190 |
-
# model tag can be any ESPnet-SE huggingface repo
|
| 191 |
-
# -- se_si_snr: the SI-SNR from a rerference speech enhancement model
|
| 192 |
-
- name: se_snr
|
| 193 |
-
model_tag: default
|
| 194 |
-
|
| 195 |
-
# PAM: Prompting Audio-Language Models for Audio Quality Assessment
|
| 196 |
-
# https://github.com/soham97/PAM/tree/main
|
| 197 |
-
|
| 198 |
-
- name: pam
|
| 199 |
-
repro: true
|
| 200 |
-
cache_dir: versa_cache/pam
|
| 201 |
-
io: soundfile
|
| 202 |
-
# TEXT ENCODER CONFIG
|
| 203 |
-
text_model: 'gpt2'
|
| 204 |
-
text_len: 77
|
| 205 |
-
transformer_embed_dim: 768
|
| 206 |
-
freeze_text_encoder_weights: True
|
| 207 |
-
# AUDIO ENCODER CONFIG
|
| 208 |
-
audioenc_name: 'HTSAT'
|
| 209 |
-
out_emb: 768
|
| 210 |
-
sampling_rate: 44100
|
| 211 |
-
duration: 7
|
| 212 |
-
fmin: 50
|
| 213 |
-
fmax: 8000 #14000
|
| 214 |
-
n_fft: 1024 # 1028
|
| 215 |
-
hop_size: 320
|
| 216 |
-
mel_bins: 64
|
| 217 |
-
window_size: 1024
|
| 218 |
-
# PROJECTION SPACE CONFIG
|
| 219 |
-
d_proj: 1024
|
| 220 |
-
temperature: 0.003
|
| 221 |
-
# TRAINING AND EVALUATION CONFIG
|
| 222 |
-
num_classes: 527
|
| 223 |
-
batch_size: 1024
|
| 224 |
-
demo: False
|
| 225 |
-
|
| 226 |
-
# Speaking rate calculating
|
| 227 |
-
# --speaking_rate: correct matching words/character counts
|
| 228 |
-
- name: speaking_rate
|
| 229 |
-
model_tag: default
|
| 230 |
-
beam_size: 1
|
| 231 |
-
text_cleaner: whisper_basic
|
| 232 |
-
|
| 233 |
-
# Audiobox Aesthetics (Unified automatic quality assessment for speech, music, and sound.)
|
| 234 |
-
- name: audiobox_aesthetics
|
| 235 |
-
batch_size: 1
|
| 236 |
-
cache_dir: versa_cache/audiobox
|
| 237 |
-
|
| 238 |
-
# ASR-match calculating
|
| 239 |
-
# --asr_match_error_rate: correct matching words/character counts
|
| 240 |
-
- name: asr_match
|
| 241 |
-
model_tag: default
|
| 242 |
-
beam_size: 1
|
| 243 |
-
text_cleaner: whisper_basic
|
| 244 |
-
|
| 245 |
-
# speaker related metrics
|
| 246 |
-
# -- spk_similarity: speaker cosine similarity
|
| 247 |
-
- name: speaker
|
| 248 |
-
model_tag: default
|
| 249 |
-
|
| 250 |
-
# asvspoof related metrics
|
| 251 |
-
# -- asvspoof_score: evaluate how the generated speech is likely to be classifiied by a deepfake classifier
|
| 252 |
-
- name: asvspoof_score
|
| 253 |
-
|
| 254 |
-
# signal related metrics
|
| 255 |
-
# -- sir: signal to interference ratio
|
| 256 |
-
# -- sar: signal to artifact ratio
|
| 257 |
-
# -- sdr: signal to distortion ratio
|
| 258 |
-
# -- ci-sdr: scale-invariant signal to distortion ratio
|
| 259 |
-
# -- si-snri: scale-invariant signal to noise ratio improvement
|
| 260 |
-
- name: signal_metric""")
|
| 261 |
|
| 262 |
# Find available metric configs
|
| 263 |
def get_available_metrics():
|
|
@@ -297,9 +82,10 @@ def get_available_metric_names():
|
|
| 297 |
return []
|
| 298 |
|
| 299 |
# First check the universal metrics file
|
| 300 |
-
|
|
|
|
| 301 |
try:
|
| 302 |
-
with open(
|
| 303 |
config = yaml.safe_load(f)
|
| 304 |
if isinstance(config, list):
|
| 305 |
for item in config:
|
|
@@ -371,8 +157,9 @@ def create_custom_metric_config(selected_metrics, metric_parameters):
|
|
| 371 |
|
| 372 |
# Load universal metrics as reference
|
| 373 |
universal_metrics = []
|
|
|
|
| 374 |
try:
|
| 375 |
-
with open(
|
| 376 |
universal_metrics = yaml.safe_load(f)
|
| 377 |
except Exception as e:
|
| 378 |
return None, f"Error loading universal metrics: {str(e)}"
|
|
@@ -549,10 +336,11 @@ def create_gradio_demo():
|
|
| 549 |
gr.Markdown(f"""
|
| 550 |
## ⚠️ VERSA Not Installed
|
| 551 |
|
| 552 |
-
VERSA does not appear to be properly installed. The
|
| 553 |
-
Please check the build logs in the Factory tab of your Hugging Face Space.
|
| 554 |
|
| 555 |
Error: {versa_status}
|
|
|
|
|
|
|
| 556 |
""")
|
| 557 |
else:
|
| 558 |
gr.Markdown("Upload audio files and evaluate them using VERSA metrics.")
|
|
@@ -736,3 +524,11 @@ mcd_f0:
|
|
| 736 |
inputs=[uploaded_yaml],
|
| 737 |
outputs=[upload_status, custom_config_path, custom_config_content, metric_dropdown]
|
| 738 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import time
|
| 12 |
from pathlib import Path
|
| 13 |
|
| 14 |
+
# VERSA paths - these are set by the Dockerfile
|
| 15 |
+
VERSA_ROOT = "/app/versa"
|
| 16 |
VERSA_BIN = os.path.join(VERSA_ROOT, "versa", "bin", "scorer.py")
|
| 17 |
VERSA_CONFIG_DIR = os.path.join(VERSA_ROOT, "egs")
|
| 18 |
|
| 19 |
+
# Data directories - also set up by the Dockerfile
|
| 20 |
+
DATA_DIR = "/app/data"
|
| 21 |
+
UPLOAD_DIR = os.path.join(DATA_DIR, "uploads")
|
| 22 |
+
RESULTS_DIR = os.path.join(DATA_DIR, "results")
|
| 23 |
+
CONFIG_DIR = os.path.join(DATA_DIR, "configs")
|
| 24 |
+
|
| 25 |
# Check if VERSA is installed
|
| 26 |
def check_versa_installation():
|
| 27 |
"""Check if VERSA is properly installed"""
|
| 28 |
if not os.path.exists(VERSA_ROOT):
|
| 29 |
+
return False, "VERSA directory not found."
|
| 30 |
|
| 31 |
if not os.path.exists(VERSA_BIN):
|
| 32 |
+
return False, "VERSA binary not found."
|
| 33 |
|
| 34 |
if not os.path.exists(VERSA_CONFIG_DIR):
|
| 35 |
+
return False, "VERSA configuration directory not found."
|
| 36 |
|
| 37 |
+
# Check if the .installation_complete file exists (created by Dockerfile)
|
| 38 |
if not os.path.exists(os.path.join(VERSA_ROOT, ".installation_complete")):
|
| 39 |
+
return False, "VERSA installation indicator file not found."
|
| 40 |
|
| 41 |
return True, "VERSA is properly installed."
|
| 42 |
|
| 43 |
# Check VERSA installation at startup
|
| 44 |
versa_installed, versa_status = check_versa_installation()
|
| 45 |
+
print(f"VERSA installation status: {versa_status}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# Find available metric configs
|
| 48 |
def get_available_metrics():
|
|
|
|
| 82 |
return []
|
| 83 |
|
| 84 |
# First check the universal metrics file
|
| 85 |
+
universal_metrics_yaml = os.path.join(CONFIG_DIR, "universal_metrics.yaml")
|
| 86 |
+
if os.path.exists(universal_metrics_yaml):
|
| 87 |
try:
|
| 88 |
+
with open(universal_metrics_yaml, 'r') as f:
|
| 89 |
config = yaml.safe_load(f)
|
| 90 |
if isinstance(config, list):
|
| 91 |
for item in config:
|
|
|
|
| 157 |
|
| 158 |
# Load universal metrics as reference
|
| 159 |
universal_metrics = []
|
| 160 |
+
universal_metrics_yaml = os.path.join(CONFIG_DIR, "universal_metrics.yaml")
|
| 161 |
try:
|
| 162 |
+
with open(universal_metrics_yaml, 'r') as f:
|
| 163 |
universal_metrics = yaml.safe_load(f)
|
| 164 |
except Exception as e:
|
| 165 |
return None, f"Error loading universal metrics: {str(e)}"
|
|
|
|
| 336 |
gr.Markdown(f"""
|
| 337 |
## ⚠️ VERSA Not Installed
|
| 338 |
|
| 339 |
+
VERSA does not appear to be properly installed. The Docker container may not have been set up correctly.
|
|
|
|
| 340 |
|
| 341 |
Error: {versa_status}
|
| 342 |
+
|
| 343 |
+
Please check the Docker build logs or contact the administrator.
|
| 344 |
""")
|
| 345 |
else:
|
| 346 |
gr.Markdown("Upload audio files and evaluate them using VERSA metrics.")
|
|
|
|
| 524 |
inputs=[uploaded_yaml],
|
| 525 |
outputs=[upload_status, custom_config_path, custom_config_content, metric_dropdown]
|
| 526 |
)
|
| 527 |
+
|
| 528 |
+
return demo
|
| 529 |
+
|
| 530 |
+
# Launch the app
|
| 531 |
+
if __name__ == "__main__":
|
| 532 |
+
demo = create_gradio_demo()
|
| 533 |
+
# Use 0.0.0.0 to listen on all interfaces, which is required for Docker
|
| 534 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
postBuild
DELETED
|
@@ -1,41 +0,0 @@
|
|
| 1 |
-
#!/bin/bash
|
| 2 |
-
# This script will run after the environment has been built but before the Space is started
|
| 3 |
-
|
| 4 |
-
set -e # Exit immediately if a command fails
|
| 5 |
-
|
| 6 |
-
echo "Starting VERSA installation for Hugging Face Space..."
|
| 7 |
-
|
| 8 |
-
# Set up directory structure
|
| 9 |
-
echo "Setting up directory structure..."
|
| 10 |
-
VERSA_ROOT="$(pwd)/versa"
|
| 11 |
-
DATA_DIR="$(pwd)/data"
|
| 12 |
-
CONFIG_DIR="${DATA_DIR}/configs"
|
| 13 |
-
UPLOAD_DIR="${DATA_DIR}/uploads"
|
| 14 |
-
RESULTS_DIR="${DATA_DIR}/results"
|
| 15 |
-
|
| 16 |
-
mkdir -p "${DATA_DIR}" "${CONFIG_DIR}" "${UPLOAD_DIR}" "${RESULTS_DIR}"
|
| 17 |
-
|
| 18 |
-
# Clone VERSA repository
|
| 19 |
-
echo "Cloning VERSA repository..."
|
| 20 |
-
if [ -d "${VERSA_ROOT}" ]; then
|
| 21 |
-
echo "VERSA directory already exists, updating..."
|
| 22 |
-
cd "${VERSA_ROOT}"
|
| 23 |
-
git pull
|
| 24 |
-
cd ..
|
| 25 |
-
else
|
| 26 |
-
echo "Cloning fresh VERSA repository..."
|
| 27 |
-
git clone https://github.com/shinjiwlab/versa.git "${VERSA_ROOT}"
|
| 28 |
-
fi
|
| 29 |
-
|
| 30 |
-
# Install VERSA
|
| 31 |
-
echo "Installing VERSA and dependencies..."
|
| 32 |
-
cd "${VERSA_ROOT}"
|
| 33 |
-
pip install -e .
|
| 34 |
-
|
| 35 |
-
# Create a file to indicate successful installation
|
| 36 |
-
touch "${VERSA_ROOT}/.installation_complete"
|
| 37 |
-
|
| 38 |
-
# Return to the original directory
|
| 39 |
-
cd ..
|
| 40 |
-
|
| 41 |
-
echo "VERSA installation completed successfully!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
gradio>=4.0.0
|
| 2 |
pyyaml>=6.0
|
| 3 |
pandas>=1.5.0
|
| 4 |
-
numpy
|
| 5 |
matplotlib>=3.5.0
|
| 6 |
soundfile>=0.12.1
|
| 7 |
scipy>=1.7.0
|
| 8 |
torch>=1.10.0
|
| 9 |
torchaudio>=0.10.0
|
| 10 |
librosa>=0.9.2
|
| 11 |
-
GitPython>=3.1.30
|
|
|
|
| 1 |
gradio>=4.0.0
|
| 2 |
pyyaml>=6.0
|
| 3 |
pandas>=1.5.0
|
| 4 |
+
numpy<=1.23.5
|
| 5 |
matplotlib>=3.5.0
|
| 6 |
soundfile>=0.12.1
|
| 7 |
scipy>=1.7.0
|
| 8 |
torch>=1.10.0
|
| 9 |
torchaudio>=0.10.0
|
| 10 |
librosa>=0.9.2
|
|
|
universal_metrics.yaml
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Universal Metrics Configuration for Versa
|
| 2 |
+
# This file contains the configuration for various universal metrics used in speech quality assessment.
|
| 3 |
+
|
| 4 |
+
# visqol metric
|
| 5 |
+
# -- visqol: visual quality of speech
|
| 6 |
+
- name: visqol
|
| 7 |
+
model: default
|
| 8 |
+
|
| 9 |
+
# Word error rate with ESPnet-OWSM model
|
| 10 |
+
# More model_tag can be from the ESPnet huggingface https://huggingface.co/espnet .
|
| 11 |
+
# The default model is `espnet/owsm_v3.1_ebf`.
|
| 12 |
+
# --lid: the nbest language tag
|
| 13 |
+
- name: lid
|
| 14 |
+
model_tag: default
|
| 15 |
+
nbest: 1
|
| 16 |
+
|
| 17 |
+
# nomad (reference-based) metric
|
| 18 |
+
# -- nomad: nomad reference-based model
|
| 19 |
+
- name: nomad
|
| 20 |
+
model_cache: versa_cache/nomad_pt-models
|
| 21 |
+
|
| 22 |
+
# srmr related metrics
|
| 23 |
+
# -- srmr: speech-to-reverberation modulation energy ratio
|
| 24 |
+
- name: srmr
|
| 25 |
+
n_cochlear_filters: 23
|
| 26 |
+
low_freq: 125
|
| 27 |
+
min_cf: 4
|
| 28 |
+
max_cf: 128
|
| 29 |
+
fast: True
|
| 30 |
+
norm: False
|
| 31 |
+
|
| 32 |
+
# Emotion similarity calculated based on emo2vec
|
| 33 |
+
# --emo2vec_similarity: the emotion similarity with emo2vec
|
| 34 |
+
- name: emo2vec_similarity
|
| 35 |
+
|
| 36 |
+
# noresqa related metrics
|
| 37 |
+
# -- noresqa: non-matching reference based speech quality assessment
|
| 38 |
+
- name: noresqa
|
| 39 |
+
metric_type: 1 #0: NORESQA-score, 1: NORESQA-MOS
|
| 40 |
+
|
| 41 |
+
# pysepm related metrics
|
| 42 |
+
# -- pysepm_fwsegsnr: frequency-weighted segmental SNR
|
| 43 |
+
# -- pysepm_llr: Log likelihood ratio
|
| 44 |
+
# -- pysepm_wss: weighted spectral slope
|
| 45 |
+
# -- pysepm_cd: cepstral distance objective speech quality measure
|
| 46 |
+
# -- pysepm_Csig, pysepm_Cbak, pysepm_Covl: composite objective speech quality
|
| 47 |
+
# -- pysepm_csii_high, pysepm_csii_mid, pysepm_csii_low: coherence and speech intelligibility index
|
| 48 |
+
# -- pysepm_ncm: normalized-covariance measure
|
| 49 |
+
- name: pysepm
|
| 50 |
+
|
| 51 |
+
# nisqa score for speech quality assessment
|
| 52 |
+
# -- nisqa_mos_pred: NISQA MOS prediction
|
| 53 |
+
# -- nisqa_noi_pred: NISQA noise prediction
|
| 54 |
+
# -- nisqa_dis_pred: NISQA distortion prediction
|
| 55 |
+
# -- nisqa_col_pred: NISQA color prediction
|
| 56 |
+
# --nisqa_loud_pred: NISQA loudness prediction
|
| 57 |
+
# NOTE(jiatong): pretrain model can be downloaded with `./tools/setup_nisqa.sh`
|
| 58 |
+
- name: nisqa
|
| 59 |
+
nisqa_model_path: ./tools/NISQA/weights/nisqa.tar
|
| 60 |
+
|
| 61 |
+
# discrete speech metrics
|
| 62 |
+
# -- speech_bert: speech bert score
|
| 63 |
+
# -- speech_bleu: speech bleu score
|
| 64 |
+
# -- speech_token_distance: speech token distance score
|
| 65 |
+
- name: discrete_speech
|
| 66 |
+
|
| 67 |
+
# mcd f0 related metrics
|
| 68 |
+
# -- mcd: mel cepstral distortion
|
| 69 |
+
# -- f0_corr: f0 correlation
|
| 70 |
+
# -- f0_rmse: f0 root mean square error
|
| 71 |
+
- name: mcd_f0
|
| 72 |
+
f0min: 40
|
| 73 |
+
f0max: 800
|
| 74 |
+
mcep_shift: 5
|
| 75 |
+
mcep_fftl: 1024
|
| 76 |
+
mcep_dim: 39
|
| 77 |
+
mcep_alpha: 0.466
|
| 78 |
+
seq_mismatch_tolerance: 0.1
|
| 79 |
+
power_threshold: -20
|
| 80 |
+
dtw: false
|
| 81 |
+
|
| 82 |
+
# An overall model on MOS-bench from Sheet toolkit
|
| 83 |
+
# --sheet_ssqa: the mos prediction from sheet_ssqa
|
| 84 |
+
- name: sheet_ssqa
|
| 85 |
+
|
| 86 |
+
# pesq related metrics
|
| 87 |
+
# -- pesq: perceptual evaluation of speech quality
|
| 88 |
+
- name: pesq
|
| 89 |
+
|
| 90 |
+
# stoi related metrics
|
| 91 |
+
# -- stoi: short-time objective intelligibility
|
| 92 |
+
- name: stoi
|
| 93 |
+
|
| 94 |
+
# pseudo subjective metrics
|
| 95 |
+
# -- utmos: UT-MOS score
|
| 96 |
+
# -- dnsmos: DNS-MOS score
|
| 97 |
+
# -- plcmos: PLC-MOS score
|
| 98 |
+
# -- aecmos: AEC-MOS score
|
| 99 |
+
- name: pseudo_mos
|
| 100 |
+
predictor_types: ["utmos", "dnsmos", "plcmos", "singmos", "utmosv2"]
|
| 101 |
+
predictor_args:
|
| 102 |
+
utmos:
|
| 103 |
+
fs: 16000
|
| 104 |
+
dnsmos:
|
| 105 |
+
fs: 16000
|
| 106 |
+
plcmos:
|
| 107 |
+
fs: 16000
|
| 108 |
+
singmos:
|
| 109 |
+
fs: 16000
|
| 110 |
+
utmosv2:
|
| 111 |
+
fs: 16000
|
| 112 |
+
|
| 113 |
+
# Word error rate with OpenAI-Whisper model
|
| 114 |
+
# -- whisper_wer: word error rate of openai-whisper
|
| 115 |
+
- name: whisper_wer
|
| 116 |
+
model_tag: default
|
| 117 |
+
beam_size: 1
|
| 118 |
+
text_cleaner: whisper_basic
|
| 119 |
+
|
| 120 |
+
# scoreq (reference-based) metric
|
| 121 |
+
# -- scoreq_ref: scoreq reference-based model
|
| 122 |
+
- name: scoreq_ref
|
| 123 |
+
data_domain: natrual
|
| 124 |
+
model_cache: versa_cache/scoreq_pt-models
|
| 125 |
+
|
| 126 |
+
# scoreq (non-reference-based) metric
|
| 127 |
+
# -- scoreq_nr: scoreq non-reference-based model
|
| 128 |
+
- name: scoreq_nr
|
| 129 |
+
data_domain: natural
|
| 130 |
+
model_cache: versa_cache/scoreq_pt-models
|
| 131 |
+
|
| 132 |
+
# Speech Enhancement-based Metrics
|
| 133 |
+
# model tag can be any ESPnet-SE huggingface repo
|
| 134 |
+
# -- se_si_snr: the SI-SNR from a rerference speech enhancement model
|
| 135 |
+
- name: se_snr
|
| 136 |
+
model_tag: default
|
| 137 |
+
|
| 138 |
+
# PAM: Prompting Audio-Language Models for Audio Quality Assessment
|
| 139 |
+
# https://github.com/soham97/PAM/tree/main
|
| 140 |
+
|
| 141 |
+
- name: pam
|
| 142 |
+
repro: true
|
| 143 |
+
cache_dir: versa_cache/pam
|
| 144 |
+
io: soundfile
|
| 145 |
+
# TEXT ENCODER CONFIG
|
| 146 |
+
text_model: 'gpt2'
|
| 147 |
+
text_len: 77
|
| 148 |
+
transformer_embed_dim: 768
|
| 149 |
+
freeze_text_encoder_weights: True
|
| 150 |
+
# AUDIO ENCODER CONFIG
|
| 151 |
+
audioenc_name: 'HTSAT'
|
| 152 |
+
out_emb: 768
|
| 153 |
+
sampling_rate: 44100
|
| 154 |
+
duration: 7
|
| 155 |
+
fmin: 50
|
| 156 |
+
fmax: 8000 #14000
|
| 157 |
+
n_fft: 1024 # 1028
|
| 158 |
+
hop_size
|