Spaces:
Running
Running
| # Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/maskformer_model.py | |
| # Reference: https://github.com/google-research/deeplab2/blob/main/model/kmax_deeplab.py | |
| # Reference: https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py | |
| # Modified by Qihang Yu | |
| from typing import Tuple, List | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from detectron2.config import configurable | |
| from detectron2.data import MetadataCatalog | |
| from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head | |
| from detectron2.modeling.backbone import Backbone | |
| from detectron2.modeling.postprocessing import sem_seg_postprocess | |
| from detectron2.structures import Boxes, ImageList, Instances | |
| from detectron2.utils.memory import retry_if_cuda_oom | |
| from .modeling.criterion import SetCriterion | |
| from .modeling.matcher import HungarianMatcher | |
| from torch.cuda.amp import autocast | |
| class kMaXDeepLab(nn.Module): | |
| """ | |
| Main class for mask classification semantic segmentation architectures. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| backbone: Backbone, | |
| sem_seg_head: nn.Module, | |
| criterion: nn.Module, | |
| num_queries: int, | |
| object_mask_threshold: float, | |
| class_threshold_thing: float, | |
| class_threshold_stuff: float, | |
| overlap_threshold: float, | |
| reorder_class_weight: float, | |
| reorder_mask_weight: float, | |
| metadata, | |
| size_divisibility: int, | |
| sem_seg_postprocess_before_inference: bool, | |
| pixel_mean: Tuple[float], | |
| pixel_std: Tuple[float], | |
| # inference | |
| semantic_on: bool, | |
| panoptic_on: bool, | |
| instance_on: bool, | |
| test_topk_per_image: int, | |
| input_shape: List[int] | |
| ): | |
| """ | |
| Args: | |
| backbone: a backbone module, must follow detectron2's backbone interface | |
| sem_seg_head: a module that predicts semantic segmentation from backbone features | |
| criterion: a module that defines the loss | |
| num_queries: int, number of queries | |
| object_mask_threshold: float, threshold to filter query based on classification score | |
| for panoptic segmentation inference | |
| overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
| metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
| segmentation inference | |
| size_divisibility: Some backbones require the input height and width to be divisible by a | |
| specific integer. We can use this to override such requirement. | |
| sem_seg_postprocess_before_inference: whether to resize the prediction back | |
| to original input size before semantic segmentation inference or after. | |
| For high-resolution dataset like Mapillary, resizing predictions before | |
| inference will cause OOM error. | |
| pixel_mean, pixel_std: list or tuple with #channels element, representing | |
| the per-channel mean and std to be used to normalize the input image | |
| semantic_on: bool, whether to output semantic segmentation prediction | |
| instance_on: bool, whether to output instance segmentation prediction | |
| panoptic_on: bool, whether to output panoptic segmentation prediction | |
| test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
| """ | |
| super().__init__() | |
| self.backbone = backbone | |
| self.sem_seg_head = sem_seg_head | |
| self.criterion = criterion | |
| self.num_queries = num_queries | |
| self.overlap_threshold = overlap_threshold | |
| self.object_mask_threshold = object_mask_threshold | |
| self.class_threshold_thing = class_threshold_thing | |
| self.class_threshold_stuff = class_threshold_stuff | |
| self.reorder_class_weight = reorder_class_weight | |
| self.reorder_mask_weight = reorder_mask_weight | |
| self.metadata = metadata | |
| if size_divisibility < 0: | |
| # use backbone size_divisibility if not set | |
| size_divisibility = self.backbone.size_divisibility | |
| self.size_divisibility = size_divisibility | |
| self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
| self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
| self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
| # additional args | |
| self.semantic_on = semantic_on | |
| self.instance_on = instance_on | |
| self.panoptic_on = panoptic_on | |
| self.test_topk_per_image = test_topk_per_image | |
| if not self.semantic_on: | |
| assert self.sem_seg_postprocess_before_inference | |
| self.input_shape = input_shape | |
| def from_config(cls, cfg): | |
| backbone = build_backbone(cfg) | |
| sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) | |
| # Loss parameters: | |
| deep_supervision = cfg.MODEL.KMAX_DEEPLAB.DEEP_SUPERVISION | |
| no_object_weight = cfg.MODEL.KMAX_DEEPLAB.NO_OBJECT_WEIGHT | |
| share_final_matching = cfg.MODEL.KMAX_DEEPLAB.SHARE_FINAL_MATCHING | |
| # loss weights | |
| class_weight = cfg.MODEL.KMAX_DEEPLAB.CLASS_WEIGHT | |
| dice_weight = cfg.MODEL.KMAX_DEEPLAB.DICE_WEIGHT | |
| mask_weight = cfg.MODEL.KMAX_DEEPLAB.MASK_WEIGHT | |
| insdis_weight = cfg.MODEL.KMAX_DEEPLAB.INSDIS_WEIGHT | |
| aux_semantic_weight = cfg.MODEL.KMAX_DEEPLAB.AUX_SEMANTIC_WEIGHT | |
| # building criterion | |
| matcher = HungarianMatcher() | |
| weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight, | |
| "loss_pixel_insdis": insdis_weight, "loss_aux_semantic": aux_semantic_weight} | |
| if deep_supervision: | |
| dec_layers = sum(cfg.MODEL.KMAX_DEEPLAB.TRANS_DEC.DEC_LAYERS) | |
| aux_weight_dict = {} | |
| for i in range(dec_layers): | |
| aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) | |
| weight_dict.update(aux_weight_dict) | |
| losses = ["labels", "masks"] | |
| if insdis_weight > 0: | |
| losses += ["pixels"] | |
| if aux_semantic_weight > 0: | |
| losses += ["aux_semantic"] | |
| criterion = SetCriterion( | |
| sem_seg_head.num_classes, | |
| matcher=matcher, | |
| weight_dict=weight_dict, | |
| eos_coef=no_object_weight, | |
| losses=losses, | |
| share_final_matching=share_final_matching, | |
| pixel_insdis_temperature=cfg.MODEL.KMAX_DEEPLAB.PIXEL_INSDIS_TEMPERATURE, | |
| pixel_insdis_sample_k=cfg.MODEL.KMAX_DEEPLAB.PIXEL_INSDIS_SAMPLE_K, | |
| aux_semantic_temperature=cfg.MODEL.KMAX_DEEPLAB.AUX_SEMANTIC_TEMPERATURE, | |
| aux_semantic_sample_k=cfg.MODEL.KMAX_DEEPLAB.UX_SEMANTIC_SAMPLE_K | |
| ) | |
| return { | |
| "backbone": backbone, | |
| "sem_seg_head": sem_seg_head, | |
| "criterion": criterion, | |
| "num_queries": cfg.MODEL.KMAX_DEEPLAB.TRANS_DEC.NUM_OBJECT_QUERIES, | |
| "object_mask_threshold": cfg.MODEL.KMAX_DEEPLAB.TEST.OBJECT_MASK_THRESHOLD, | |
| "class_threshold_thing": cfg.MODEL.KMAX_DEEPLAB.TEST.CLASS_THRESHOLD_THING, | |
| "class_threshold_stuff": cfg.MODEL.KMAX_DEEPLAB.TEST.CLASS_THRESHOLD_STUFF, | |
| "overlap_threshold": cfg.MODEL.KMAX_DEEPLAB.TEST.OVERLAP_THRESHOLD, | |
| "reorder_class_weight": cfg.MODEL.KMAX_DEEPLAB.TEST.REORDER_CLASS_WEIGHT, | |
| "reorder_mask_weight": cfg.MODEL.KMAX_DEEPLAB.TEST.REORDER_MASK_WEIGHT, | |
| "metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), | |
| "size_divisibility": cfg.MODEL.KMAX_DEEPLAB.SIZE_DIVISIBILITY, | |
| "sem_seg_postprocess_before_inference": ( | |
| cfg.MODEL.KMAX_DEEPLAB.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE | |
| or cfg.MODEL.KMAX_DEEPLAB.TEST.PANOPTIC_ON | |
| or cfg.MODEL.KMAX_DEEPLAB.TEST.INSTANCE_ON | |
| ), | |
| "pixel_mean": cfg.MODEL.PIXEL_MEAN, | |
| "pixel_std": cfg.MODEL.PIXEL_STD, | |
| # inference | |
| "semantic_on": cfg.MODEL.KMAX_DEEPLAB.TEST.SEMANTIC_ON, | |
| "instance_on": cfg.MODEL.KMAX_DEEPLAB.TEST.INSTANCE_ON, | |
| "panoptic_on": cfg.MODEL.KMAX_DEEPLAB.TEST.PANOPTIC_ON, | |
| "test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, | |
| "input_shape": cfg.INPUT.IMAGE_SIZE | |
| } | |
| def device(self): | |
| return self.pixel_mean.device | |
| def forward(self, batched_inputs): | |
| """ | |
| Args: | |
| batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
| Each item in the list contains the inputs for one image. | |
| For now, each item in the list is a dict that contains: | |
| * "image": Tensor, image in (C, H, W) format. | |
| * "instances": per-region ground truth | |
| * Other information that's included in the original dicts, such as: | |
| "height", "width" (int): the output resolution of the model (may be different | |
| from input resolution), used in inference. | |
| Returns: | |
| list[dict]: | |
| each dict has the results for one image. The dict contains the following keys: | |
| * "sem_seg": | |
| A Tensor that represents the | |
| per-pixel segmentation prediced by the head. | |
| The prediction has shape KxHxW that represents the logits of | |
| each class for each pixel. | |
| * "panoptic_seg": | |
| A tuple that represent panoptic output | |
| panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
| segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
| Each dict contains keys "id", "category_id", "isthing". | |
| """ | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| if "is_real_pixels" in batched_inputs[0]: | |
| is_real_pixels = [x["is_real_pixels"] for x in batched_inputs] | |
| # Set all padded pixel values to 0. | |
| images = [x * y.to(x) for x, y in zip(images, is_real_pixels)] | |
| # We perform zero padding to ensure input shape equal to self.input_shape. | |
| # The padding is done on the right and bottom sides. | |
| for idx in range(len(images)): | |
| cur_height, cur_width = images[idx].shape[-2:] | |
| padding = (0, max(0, self.input_shape[1] - cur_width), 0, max(0, self.input_shape[0] - cur_height), 0, 0) | |
| images[idx] = F.pad(images[idx], padding, value=0) | |
| images = ImageList.from_tensors(images, -1) | |
| if self.training: | |
| # mask classification target | |
| if "instances" in batched_inputs[0]: | |
| gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
| gt_semantic = [x["sem_seg_gt"].to(self.device) for x in batched_inputs] | |
| targets = self.prepare_targets(gt_instances, gt_semantic, images) | |
| else: | |
| targets = None | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features) | |
| if self.training: | |
| with autocast(enabled=False): | |
| # bipartite matching-based loss | |
| for output_key in ["pixel_feature", "pred_masks", "pred_logits", "aux_semantic_pred"]: | |
| if output_key in outputs: | |
| outputs[output_key] = outputs[output_key].float() | |
| for i in range(len(outputs["aux_outputs"])): | |
| for output_key in ["pixel_feature", "pred_masks", "pred_logits"]: | |
| outputs["aux_outputs"][i][output_key] = outputs["aux_outputs"][i][output_key].float() | |
| losses = self.criterion(outputs, targets) | |
| for k in list(losses.keys()): | |
| if k in self.criterion.weight_dict: | |
| losses[k] *= self.criterion.weight_dict[k] | |
| else: | |
| # remove this loss if not specified in `weight_dict` | |
| losses.pop(k) | |
| return losses | |
| else: | |
| mask_cls_results = outputs["pred_logits"] | |
| mask_pred_results = outputs["pred_masks"] | |
| align_corners = (images.tensor.shape[-1] % 2 == 1) | |
| # upsample masks | |
| mask_pred_results = F.interpolate( | |
| mask_pred_results, | |
| size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
| mode="bilinear", | |
| align_corners=align_corners, | |
| ) | |
| del outputs | |
| processed_results = [] | |
| for mask_cls_result, mask_pred_result, input_per_image, image_size in zip( | |
| mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes | |
| ): | |
| height = input_per_image.get("height", image_size[0]) | |
| width = input_per_image.get("width", image_size[1]) | |
| cur_image = input_per_image["image"].to(self.device) | |
| processed_results.append({}) | |
| scale_factor = max(images.tensor.shape[-2:]) / max(height, width) | |
| ori_height, ori_width = round(height * scale_factor), round(width * scale_factor) | |
| mask_pred_result = mask_pred_result[:, :ori_height, :ori_width].expand(1, -1, -1, -1) | |
| cur_image = cur_image[:, :ori_height, :ori_width].expand(1, -1, -1, -1) | |
| mask_pred_result = F.interpolate( | |
| mask_pred_result, size=(height, width), mode="bilinear", align_corners=align_corners | |
| )[0] | |
| cur_image = F.interpolate( | |
| cur_image.float(), size=(height, width), mode="bilinear", align_corners=align_corners | |
| )[0].to(torch.uint8) | |
| if self.sem_seg_postprocess_before_inference: | |
| mask_cls_result = mask_cls_result.to(mask_pred_result) | |
| # semantic segmentation inference | |
| if self.semantic_on: | |
| r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) | |
| if not self.sem_seg_postprocess_before_inference: | |
| r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) | |
| processed_results[-1]["sem_seg"] = r | |
| # panoptic segmentation inference | |
| if self.panoptic_on: | |
| panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) | |
| processed_results[-1]["panoptic_seg"] = panoptic_r | |
| processed_results[-1]["original_image"] = cur_image | |
| # instance segmentation inference | |
| if self.instance_on: | |
| instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result) | |
| processed_results[-1]["instances"] = instance_r | |
| return processed_results | |
| def prepare_targets(self, targets, targets_semantic, images): | |
| new_targets = [] | |
| for targets_per_image, semantic_gt_mask in zip(targets, targets_semantic): | |
| gt_masks = targets_per_image.gt_masks | |
| new_targets.append( | |
| { | |
| "labels": targets_per_image.gt_classes, | |
| "masks": gt_masks, | |
| "semantic_masks": semantic_gt_mask | |
| } | |
| ) | |
| return new_targets | |
| def semantic_inference(self, mask_cls, mask_pred): | |
| # For cls prob, we exluced the void class following | |
| # https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py#L199 | |
| mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
| mask_pred = F.softmax(mask_pred, dim=0) | |
| semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
| return semseg | |
| def panoptic_inference(self, mask_cls, mask_pred): | |
| # mask_cls: N x C | |
| # mask_pred: N x H x W | |
| # some hyper-params | |
| num_mask_slots = mask_pred.shape[0] | |
| cls_threshold_thing = self.class_threshold_thing | |
| cls_threshold_stuff = self.class_threshold_stuff | |
| object_mask_threshold = self.object_mask_threshold | |
| overlap_threshold = self.overlap_threshold | |
| reorder_class_weight = self.reorder_class_weight | |
| reorder_mask_weight = self.reorder_mask_weight | |
| # https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py#L675 | |
| # https://github.com/google-research/deeplab2/blob/main/model/post_processor/max_deeplab.py#L199 | |
| cls_scores, cls_labels = F.softmax(mask_cls, dim=-1)[..., :-1].max(-1) # N | |
| mask_scores = F.softmax(mask_pred, dim=0) | |
| binary_masks = mask_scores > object_mask_threshold # N x H x W | |
| mask_scores_flat = mask_scores.flatten(1) # N x HW | |
| binary_masks_flat = binary_masks.flatten(1).float() # N x HW | |
| pixel_number_flat = binary_masks_flat.sum(1) # N | |
| mask_scores_flat = (mask_scores_flat * binary_masks_flat).sum(1) / torch.clamp(pixel_number_flat, min=1.0) # N | |
| reorder_score = (cls_scores ** reorder_class_weight) * (mask_scores_flat ** reorder_mask_weight) # N | |
| reorder_indices = torch.argsort(reorder_score, dim=-1, descending=True) | |
| panoptic_seg = torch.zeros((mask_pred.shape[1], mask_pred.shape[2]), | |
| dtype=torch.int32, device=mask_pred.device) | |
| segments_info = [] | |
| current_segment_id = 0 | |
| stuff_memory_list = {} | |
| for i in range(num_mask_slots): | |
| cur_idx = reorder_indices[i].item() # 1 | |
| cur_binary_mask = binary_masks[cur_idx] # H x W | |
| cur_cls_score = cls_scores[cur_idx].item() # 1 | |
| cur_cls_label = cls_labels[cur_idx].item() # 1 | |
| is_thing = cur_cls_label in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
| is_confident = (is_thing and cur_cls_score > cls_threshold_thing) or ( | |
| (not is_thing) and cur_cls_score > cls_threshold_stuff) | |
| original_pixel_number = cur_binary_mask.float().sum() | |
| new_binary_mask = torch.logical_and(cur_binary_mask, (panoptic_seg == 0)) | |
| new_pixel_number = new_binary_mask.float().sum() | |
| is_not_overlap_too_much = new_pixel_number > (original_pixel_number * overlap_threshold) | |
| if is_confident and is_not_overlap_too_much: | |
| # merge stuff regions | |
| if not is_thing: | |
| if int(cur_cls_label) in stuff_memory_list.keys(): | |
| panoptic_seg[new_binary_mask] = stuff_memory_list[int(cur_cls_label)] | |
| continue | |
| else: | |
| stuff_memory_list[int(cur_cls_label)] = current_segment_id + 1 | |
| current_segment_id += 1 | |
| panoptic_seg[new_binary_mask] = current_segment_id | |
| segments_info.append( | |
| { | |
| "id": current_segment_id, | |
| "isthing": bool(is_thing), | |
| "category_id": int(cur_cls_label), | |
| } | |
| ) | |
| return panoptic_seg, segments_info | |
| def instance_inference(self, mask_cls, mask_pred): | |
| # mask_pred is already processed to have the same shape as original input | |
| image_size = mask_pred.shape[-2:] | |
| mask_pred = mask_pred.softmax(dim=0) | |
| # [Q, K] | |
| scores = F.softmax(mask_cls[:, :-1], dim=-1) | |
| labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
| scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) | |
| labels_per_image = labels[topk_indices] | |
| topk_indices = topk_indices // self.sem_seg_head.num_classes | |
| mask_pred = mask_pred[topk_indices] | |
| # if this is panoptic segmentation, we only keep the "thing" classes | |
| if self.panoptic_on: | |
| keep = torch.zeros_like(scores_per_image).bool() | |
| for i, lab in enumerate(labels_per_image): | |
| keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
| scores_per_image = scores_per_image[keep] | |
| labels_per_image = labels_per_image[keep] | |
| mask_pred = mask_pred[keep] | |
| result = Instances(image_size) | |
| result.pred_masks = (mask_pred > self.object_mask_threshold).float() | |
| result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
| # Uncomment the following to get boxes from masks (this is slow) | |
| # result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
| # calculate average mask prob | |
| mask_scores_per_image = (mask_pred.flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
| result.scores = scores_per_image * mask_scores_per_image | |
| result.pred_classes = labels_per_image | |
| return result | |