Spaces:
Build error
Build error
| import gradio as gr | |
| import torch | |
| from transformers import pipeline, AutoTokenizer, AutoModel, LlamaForCausalLM | |
| from peft import PeftModel | |
| #pipe = pipeline("text-generation", model="furquan/opt_2_7_b_prompt_tuned_sentiment_analysis", trust_remote_code=True, cache_dir="/local/home/furquanh/myProjects/week12/").to('cuda') | |
| tokenizer = AutoTokenizer.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True) | |
| model = AutoModel.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True) | |
| # | |
| title = "OPT-1.3B" | |
| description = "This demo uses meta's OPT-1.3B Causal LM as base model that was prompt tuned on the Stanford Sentiment Treebank dataset to only output the sentiment of a given text." | |
| article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2104.08691.pdf' target='_blank'>The Power of Scale for Parameter-Efficient Prompt Tuning</a></p>" | |
| def sentiment(text): | |
| if text[-1] != ' ': | |
| text = f"{text} " | |
| tokenized = tokenizer(text, return_tensors='pt') | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| input_ids=tokenized["input_ids"], attention_mask=tokenized["attention_mask"] | |
| ) | |
| return f"text: {text} Sentiment: {tokenizer.decode(outputs[0], skip_special_tokens=True).split(' ')[-1]}" | |
| iface = gr.Interface(fn=sentiment, inputs="text", outputs="text", title=title, | |
| description=description, article=article) | |
| iface.launch() | |