Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| # 加载本地模型和tokenizer | |
| model_name = "ganchengguang/OIELLM-8B-Instruction" # 替换为你的模型名称 | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True | |
| ) | |
| # 定义语言和选项的映射 | |
| options = { | |
| 'English': {'NER': '/NER/', 'Sentimentrw': '/Sentiment related word/', 'Sentimentadjn': '/Sentiment Adj and N/', 'Sentimentadj': '/Sentiment Adj/', 'Sentimentn': '/Sentiment N/', 'Relation': '/relation extraction/', 'Event': '/event extraction/'}, | |
| '中文': {'NER': '/实体命名识别/', 'Sentimentrw': '/感情分析关联单词/', 'Sentimentadjn': '/感情分析形容词名词/', 'Sentimentadj': '/感情分析形容词/', 'Sentimentn': '/感情分析名词/', 'Relation': '/关系抽取/', 'Event': '/事件抽取/'}, | |
| '日本語': {'NER': '/固有表現抽出/', 'Sentimentrw': '/感情分析関連単語/', 'Sentimentadjn': '/感情分析形容詞名詞/', 'Sentimentadj': '/感情分析形容詞/', 'Sentimentn': '/感情分析名詞/', 'Relation': '/関係抽出/', 'Event': '/事件抽出/'} | |
| } | |
| # 定义聊天函数 | |
| def respond(message, language, task, max_tokens): | |
| # 初始化对话历史 | |
| system_message = "You are a friendly Chatbot." | |
| messages = [{"role": "system", "content": system_message}] | |
| user_message = message + " " + options[language][task] | |
| messages.append({"role": "user", "content": user_message}) | |
| # 编码输入 | |
| inputs = tokenizer(user_message, return_tensors="pt", padding=True, truncation=True) | |
| # 生成回复 | |
| outputs = model.generate( | |
| inputs["input_ids"], | |
| max_length=max_tokens, | |
| do_sample=True | |
| ) | |
| # 解码回复 | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # 去除输入部分 | |
| response = response[len(user_message):].strip() | |
| return response | |
| # 更新任务选项的函数 | |
| def update_tasks(language): | |
| return gr.update(choices=list(options[language].keys())) | |
| # 创建Gradio接口 | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Open-domain Information Extraction Large Language Models Demo") | |
| language = gr.Dropdown(label="Language", choices=list(options.keys()), value="English") | |
| task = gr.Dropdown(label="Task", choices=list(options['English'].keys())) | |
| message = gr.Textbox(label="Input Text") | |
| max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") | |
| output = gr.Textbox(label="Output") | |
| send_button = gr.Button("Send") | |
| language.change(update_tasks, inputs=language, outputs=task) | |
| send_button.click(respond, inputs=[message, language, task, max_tokens], outputs=output) | |
| if __name__ == "__main__": | |
| demo.launch() | |