isLinXu
update
3d9521c
import os
os.system("pip install 'mmengine>=0.6.0'")
os.system("pip install 'mmcv>=2.0.0rc4,<2.1.0'")
os.system("pip install mmsegmentation")
import gradio as gr
import fnmatch
import cv2
import numpy as np
import torch
from mmengine import Config
from mmseg.apis import init_model, inference_model, show_result_pyplot
from mmseg.apis import MMSegInferencer
import PIL
from mim import download
import warnings
warnings.filterwarnings("ignore")
mmseg_models_list = MMSegInferencer.list_models('mmseg')
path = "./checkpoint"
if not os.path.exists(path):
os.makedirs(path)
def clear_folder(folder_path):
import shutil
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
print(f"Clear {folder_path} successfully.")
def save_image(img, img_path):
# Convert PIL image to OpenCV image
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Save OpenCV image
cv2.imwrite(img_path, img)
def download_test_image():
# Images
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264420-21575a83-4057-41cf-8a4a-b3ea6f332d79.jpg',
'bus.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264536-82afdf58-6b9a-4568-b9df-551ee72cb6d9.jpg',
'dogs.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264600-9d0c26ca-8ba6-45f2-b53b-4dc98460c43e.jpg',
'zidane.jpg')
def download_cfg_checkpoint_model_name(model_name):
clear_folder("./checkpoint")
download(package='mmsegmentation',
configs=[model_name],
dest_root='./checkpoint')
# 定义推理函数
def predict(img, model_name):
# 保存输入图片
img_path = 'input_image.png'
save_image(img, img_path)
download_cfg_checkpoint_model_name(model_name)
config_path = [f for f in os.listdir(path) if fnmatch.fnmatch(f, "*.py")][0]
config_path = path + "/" + config_path
checkpoint_path = [f for f in os.listdir(path) if fnmatch.fnmatch(f, "*.pth")][0]
checkpoint_path = path + "/" + checkpoint_path
# 从配置文件和权重文件构建模型
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
if device == 'cpu':
config_path = Config.fromfile(config_path)
# Remove pretrain model download for testing
config_path.model.pretrained = None
# Replace SyncBN with BN to inference on CPU
norm_cfg = dict(type='BN', requires_grad=True)
config_path.model.backbone.norm_cfg = norm_cfg
config_path.model.decode_head.norm_cfg = norm_cfg
config_path.model.auxiliary_head.norm_cfg = norm_cfg
model = init_model(config_path, checkpoint_path, device=device)
# 推理给定图像
result = inference_model(model, img_path)
# 保存可视化结果
vis_image = show_result_pyplot(model, img_path, result, show=False)
vis_image_path = 'output_image.png'
cv2.imwrite(vis_image_path, vis_image)
output_img = PIL.Image.open(vis_image_path)
# 返回输出图片
return output_img
download_test_image()
# 定义输入和输出界面
inputs_img = gr.inputs.Image(type='pil', label="Input Image")
model_list = gr.inputs.Dropdown(choices=[m for m in mmseg_models_list], label='Model')
outputs_img = gr.outputs.Image(type='pil', label="Output Image")
# 启动界面
title = "MMSegmentation segmentation web demo"
description = "<div align='center'><img src='https://raw.githubusercontent.com/open-mmlab/mmsegmentation/main/resources/mmseg-logo.png' width='450''/><div>" \
"<p style='text-align: center'><a href='https://github.com/open-mmlab/mmsegmentation'>MMSegmentation</a> MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 OpenMMLab 项目的一部分。" \
"OpenMMLab Semantic Segmentation Toolbox and Benchmark..</p>"
article = "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmsegmentation'>MMSegmentation</a></p>" \
"<p style='text-align: center'><a href='https://github.com/isLinXu'>gradio build by gatilin</a></a></p>"
examples = [["bus.jpg", "deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024"],
["dogs.jpg", "pspnet_r50-d8_4xb2-40k_cityscapes-512x1024"],
["zidane.jpg", "fcn_r101-d8_4xb4-80k_ade20k-512x512"]
]
gr.Interface(fn=predict, inputs=[inputs_img, model_list], outputs=outputs_img, examples=examples,
title=title, description=description, article=article).launch()