Spaces:
Runtime error
Runtime error
isLinXu
commited on
Commit
·
32a5465
1
Parent(s):
d42c518
update
Browse files
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
# os.system("pip install 'mmcv-full>=1.3.17,<=1.7.0'")
|
| 3 |
+
os.system("pip install 'mmcv-full>=1.3.17,<=1.7.0'")
|
| 4 |
+
os.system("pip install mmdet==2.25.1")
|
| 5 |
+
os.system("git clone https://github.com/open-mmlab/mmtracking.git")
|
| 6 |
+
os.system("pip install -r mmtracking/requirements.txt")
|
| 7 |
+
os.system("pip install -v -e mmtracking/")
|
| 8 |
+
os.system("pip install 'mmtrack'")
|
| 9 |
+
import os
|
| 10 |
+
import os.path as osp
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import tempfile
|
| 13 |
+
from argparse import ArgumentParser
|
| 14 |
+
|
| 15 |
+
import mmcv
|
| 16 |
+
|
| 17 |
+
from mmtrack.apis import inference_mot, init_model
|
| 18 |
+
|
| 19 |
+
def parse_args():
|
| 20 |
+
parser = ArgumentParser()
|
| 21 |
+
parser.add_argument('--config', help='config file')
|
| 22 |
+
parser.add_argument('--input', help='input video file or folder')
|
| 23 |
+
parser.add_argument(
|
| 24 |
+
'--output', help='output video file (mp4 format) or folder')
|
| 25 |
+
parser.add_argument('--checkpoint', help='checkpoint file')
|
| 26 |
+
parser.add_argument(
|
| 27 |
+
'--score-thr',
|
| 28 |
+
type=float,
|
| 29 |
+
default=0.0,
|
| 30 |
+
help='The threshold of score to filter bboxes.')
|
| 31 |
+
parser.add_argument(
|
| 32 |
+
'--device', default='cuda:0', help='device used for inference')
|
| 33 |
+
parser.add_argument(
|
| 34 |
+
'--show',
|
| 35 |
+
action='store_true',
|
| 36 |
+
help='whether show the results on the fly')
|
| 37 |
+
parser.add_argument(
|
| 38 |
+
'--backend',
|
| 39 |
+
choices=['cv2', 'plt'],
|
| 40 |
+
default='cv2',
|
| 41 |
+
help='the backend to visualize the results')
|
| 42 |
+
parser.add_argument('--fps', help='FPS of the output video')
|
| 43 |
+
args = parser.parse_args()
|
| 44 |
+
return args
|
| 45 |
+
def track_mot(input, config, output, device, score_thr):
|
| 46 |
+
args = parse_args()
|
| 47 |
+
args.input = input
|
| 48 |
+
args.config = config
|
| 49 |
+
args.output = output
|
| 50 |
+
args.device = device
|
| 51 |
+
args.score_thr = score_thr
|
| 52 |
+
args.show = False
|
| 53 |
+
args.backend = 'cv2'
|
| 54 |
+
|
| 55 |
+
# assert args.output or args.show
|
| 56 |
+
# load images
|
| 57 |
+
if osp.isdir(args.input):
|
| 58 |
+
imgs = sorted(
|
| 59 |
+
filter(lambda x: x.endswith(('.jpg', '.png', '.jpeg')),
|
| 60 |
+
os.listdir(args.input)),
|
| 61 |
+
key=lambda x: int(x.split('.')[0]))
|
| 62 |
+
IN_VIDEO = False
|
| 63 |
+
else:
|
| 64 |
+
imgs = mmcv.VideoReader(args.input)
|
| 65 |
+
IN_VIDEO = True
|
| 66 |
+
# define output
|
| 67 |
+
if args.output is not None:
|
| 68 |
+
if args.output.endswith('.mp4'):
|
| 69 |
+
OUT_VIDEO = True
|
| 70 |
+
out_dir = tempfile.TemporaryDirectory()
|
| 71 |
+
out_path = out_dir.name
|
| 72 |
+
_out = args.output.rsplit(os.sep, 1)
|
| 73 |
+
if len(_out) > 1:
|
| 74 |
+
os.makedirs(_out[0], exist_ok=True)
|
| 75 |
+
else:
|
| 76 |
+
OUT_VIDEO = False
|
| 77 |
+
out_path = args.output
|
| 78 |
+
os.makedirs(out_path, exist_ok=True)
|
| 79 |
+
#
|
| 80 |
+
fps = args.fps
|
| 81 |
+
if args.show or OUT_VIDEO:
|
| 82 |
+
if fps is None and IN_VIDEO:
|
| 83 |
+
fps = imgs.fps
|
| 84 |
+
if not fps:
|
| 85 |
+
raise ValueError('Please set the FPS for the output video.')
|
| 86 |
+
fps = int(fps)
|
| 87 |
+
#
|
| 88 |
+
# build the model from a config file and a checkpoint file
|
| 89 |
+
model = init_model(args.config, args.checkpoint, device=args.device)
|
| 90 |
+
|
| 91 |
+
prog_bar = mmcv.ProgressBar(len(imgs))
|
| 92 |
+
# test and show/save the images
|
| 93 |
+
for i, img in enumerate(imgs):
|
| 94 |
+
if isinstance(img, str):
|
| 95 |
+
img = osp.join(args.input, img)
|
| 96 |
+
result = inference_mot(model, img, frame_id=i)
|
| 97 |
+
if args.output is not None:
|
| 98 |
+
if IN_VIDEO or OUT_VIDEO:
|
| 99 |
+
out_file = osp.join(out_path, f'{i:06d}.jpg')
|
| 100 |
+
else:
|
| 101 |
+
out_file = osp.join(out_path, img.rsplit(os.sep, 1)[-1])
|
| 102 |
+
else:
|
| 103 |
+
out_file = None
|
| 104 |
+
model.show_result(
|
| 105 |
+
img,
|
| 106 |
+
result,
|
| 107 |
+
score_thr=args.score_thr,
|
| 108 |
+
show=args.show,
|
| 109 |
+
wait_time=int(1000. / fps) if fps else 0,
|
| 110 |
+
out_file=out_file,
|
| 111 |
+
backend=args.backend)
|
| 112 |
+
prog_bar.update()
|
| 113 |
+
|
| 114 |
+
if args.output and OUT_VIDEO:
|
| 115 |
+
print(f'making the output video at {args.output} with a FPS of {fps}')
|
| 116 |
+
mmcv.frames2video(out_path, args.output, fps=fps, fourcc='mp4v')
|
| 117 |
+
out_dir.cleanup()
|
| 118 |
+
# print("output:", out_dir)
|
| 119 |
+
|
| 120 |
+
# return output
|
| 121 |
+
# print("output:", out_dir)
|
| 122 |
+
save_dir = 'mot.mp4'
|
| 123 |
+
return save_dir
|
| 124 |
+
|
| 125 |
+
if __name__ == '__main__':
|
| 126 |
+
# main()
|
| 127 |
+
input_video = gr.Video(type="mp4", label="Input Video")
|
| 128 |
+
config = gr.inputs.Textbox(default="configs/mot/deepsort/sort_faster-rcnn_fpn_4e_mot17-private.py")
|
| 129 |
+
output = gr.inputs.Textbox(default="mot.mp4", label="Output Video")
|
| 130 |
+
device = gr.inputs.Radio(choices=["cpu", "cuda"], label="Device used for inference", default="cpu")
|
| 131 |
+
score_thr = gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.3, label="The threshold of score to filter bboxes.")
|
| 132 |
+
output_video = gr.Video(type="mp4", label="Output Image")
|
| 133 |
+
|
| 134 |
+
title = "MMTracking web demo"
|
| 135 |
+
description = "<div align='center'><img src='https://raw.githubusercontent.com/open-mmlab/mmtracking/master/resources/mmtrack-logo.png' width='450''/><div>" \
|
| 136 |
+
"<p style='text-align: center'><a href='https://github.com/open-mmlab/mmtracking'>MMTracking</a> MMTracking是一款基于PyTorch的视频目标感知开源工具箱,是OpenMMLab项目的一部分。" \
|
| 137 |
+
"OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework..</p>"
|
| 138 |
+
article = "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmtracking'>MMTracking</a></p>" \
|
| 139 |
+
"<p style='text-align: center'><a href='https://github.com/open-mmlab/mmtracking'>gradio build by gatilin</a></a></p>"
|
| 140 |
+
|
| 141 |
+
# Create Gradio interface
|
| 142 |
+
iface = gr.Interface(
|
| 143 |
+
fn=track_mot,
|
| 144 |
+
inputs=[
|
| 145 |
+
input_video, config, output, device, score_thr
|
| 146 |
+
],
|
| 147 |
+
# outputs="playable_video",
|
| 148 |
+
outputs=output_video,
|
| 149 |
+
title=title, description=description, article=article,
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# Launch Gradio interface
|
| 153 |
+
iface.launch()
|