Spaces:
Runtime error
Runtime error
File size: 2,993 Bytes
00fb916 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import models, transforms
import warnings
warnings.filterwarnings("ignore")
# ε 载樑ε
models_dict = {
'DeepLabv3': models.segmentation.deeplabv3_resnet50(pretrained=True).eval(),
'DeepLabv3+': models.segmentation.deeplabv3_resnet101(pretrained=True).eval(),
'FCN-ResNet50': models.segmentation.fcn_resnet50(pretrained=True).eval(),
'FCN-ResNet101': models.segmentation.fcn_resnet101(pretrained=True).eval(),
'LRR': models.segmentation.lraspp_mobilenet_v3_large(pretrained=True).eval(),
}
# εΎει’ε€η
image_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
def download_test_img():
# Images
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264420-21575a83-4057-41cf-8a4a-b3ea6f332d79.jpg',
'bus.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264536-82afdf58-6b9a-4568-b9df-551ee72cb6d9.jpg',
'dogs.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264600-9d0c26ca-8ba6-45f2-b53b-4dc98460c43e.jpg',
'zidane.jpg')
def predict_segmentation(image, model_name):
# εΎει’ε€η
image_tensor = image_transforms(image).unsqueeze(0)
# 樑εζ¨η
with torch.no_grad():
output = models_dict[model_name](image_tensor)['out'][0]
output_predictions = output.argmax(0)
segmentation = F.interpolate(
output.float().unsqueeze(0),
size=image.size[::-1],
mode='bicubic',
align_corners=False
)[0].argmax(0).numpy()
# εε²εΎ
segmentation_image = np.uint8(segmentation)
segmentation_image = cv2.applyColorMap(segmentation_image, cv2.COLORMAP_JET)
# θεεΎ
blend_image = cv2.addWeighted(np.array(image), 0.5, segmentation_image, 0.5, 0)
blend_image = cv2.cvtColor(blend_image, cv2.COLOR_BGR2RGB)
return segmentation_image, blend_image
import gradio as gr
examples = [
['bus.jpg', 'DeepLabv3'],
['dogs.jpg', 'DeepLabv3'],
['zidane.jpg', 'DeepLabv3']
]
download_test_img()
model_list = ['DeepLabv3', 'DeepLabv3+', 'FCN-ResNet50', 'FCN-ResNet101', 'LRR']
inputs = [
gr.inputs.Image(type='pil', label='εε§εΎε'),
gr.inputs.Dropdown(model_list, label='ιζ©ζ¨‘ε', default='DeepLabv3')
]
outputs = [
gr.outputs.Image(type='pil',label='εε²εΎ'),
gr.outputs.Image(type='pil',label='θεεΎ')
]
interface = gr.Interface(
predict_segmentation,
inputs,
outputs,
examples=examples,
capture_session=True,
title='torchvision-segmentation-webui',
description='torchvision segmentation webui on gradio'
)
interface.launch() |