gaur3009 commited on
Commit
54f05b5
·
verified ·
1 Parent(s): 987bc6e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -0
app.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
4
+ from sentence_transformers import SentenceTransformer
5
+ import faiss
6
+ import torch
7
+
8
+ # -------------------------------
9
+ # Load dataset
10
+ # -------------------------------
11
+ file_path = "marketing-campaigns.csv"
12
+ df = pd.read_csv(file_path)
13
+
14
+ # Combine text for embeddings
15
+ df = df.dropna(subset=["campaign_name", "description"])
16
+ df["text"] = df["campaign_name"] + ": " + df["description"]
17
+
18
+ # -------------------------------
19
+ # Embeddings + FAISS index
20
+ # -------------------------------
21
+ embed_model = SentenceTransformer("all-MiniLM-L6-v2")
22
+
23
+ embeddings = embed_model.encode(df["text"].tolist(), convert_to_tensor=True, show_progress_bar=True)
24
+ embeddings_np = embeddings.detach().cpu().numpy()
25
+
26
+ # Build FAISS index
27
+ d = embeddings_np.shape[1]
28
+ index = faiss.IndexFlatL2(d)
29
+ index.add(embeddings_np)
30
+
31
+ # -------------------------------
32
+ # Load LLM (Phi-4-mini)
33
+ # -------------------------------
34
+ model_name = "microsoft/phi-4-mini"
35
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
36
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, device_map="auto")
37
+
38
+ # -------------------------------
39
+ # RAG functions
40
+ # -------------------------------
41
+ def retrieve_context(query, k=3):
42
+ query_vec = embed_model.encode([query], convert_to_tensor=True).cpu().numpy()
43
+ D, I = index.search(query_vec, k)
44
+ results = [df.iloc[i]["text"] for i in I[0]]
45
+ return results
46
+
47
+ def generate_with_rag(prompt):
48
+ # Step 1: Retrieve top campaigns
49
+ context = retrieve_context(prompt, k=3)
50
+ context_str = "\n".join(context)
51
+
52
+ # Step 2: Build final prompt
53
+ rag_prompt = f"""
54
+ You are an AI marketing assistant.
55
+ Here are some past campaigns for reference:\n{context_str}\n
56
+ Based on these, generate a new campaign idea for: {prompt}
57
+ """
58
+
59
+ # Step 3: Generate with Phi-4
60
+ inputs = tokenizer(rag_prompt, return_tensors="pt").to(model.device)
61
+ outputs = model.generate(**inputs, max_length=200, temperature=0.7, top_p=0.9)
62
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
63
+
64
+ # -------------------------------
65
+ # Gradio UI
66
+ # -------------------------------
67
+ with gr.Blocks() as demo:
68
+ gr.Markdown("## 🤖 RAG-powered AI Marketing Campaign Generator")
69
+
70
+ with gr.Row():
71
+ query = gr.Textbox(label="Enter campaign idea or analysis query")
72
+ output = gr.Textbox(label="Generated Campaign")
73
+ btn = gr.Button("Generate with RAG")
74
+
75
+ btn.click(generate_with_rag, inputs=query, outputs=output)
76
+
77
+ if __name__ == "__main__":
78
+ demo.launch()