Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,17 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
-
from sentence_transformers import SentenceTransformer
|
| 5 |
import faiss
|
| 6 |
import torch
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# -------------------------------
|
| 9 |
# Load dataset
|
| 10 |
# -------------------------------
|
| 11 |
-
file_path = "marketing-campaigns.csv"
|
| 12 |
df = pd.read_csv(file_path)
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
raise ValueError("CSV is empty. Please provide a dataset with campaign info.")
|
| 16 |
-
|
| 17 |
-
# Join all columns to form knowledge text
|
| 18 |
-
df = df.dropna()
|
| 19 |
-
df["text"] = df.astype(str).agg(" | ".join, axis=1)
|
| 20 |
|
| 21 |
# -------------------------------
|
| 22 |
# Embeddings + FAISS
|
|
@@ -30,91 +25,155 @@ index = faiss.IndexFlatL2(d)
|
|
| 30 |
index.add(embeddings_np)
|
| 31 |
|
| 32 |
# -------------------------------
|
| 33 |
-
# Load LLM (Phi-4-mini)
|
| 34 |
# -------------------------------
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# -------------------------------
|
| 40 |
-
# RAG
|
| 41 |
# -------------------------------
|
| 42 |
def retrieve_context(query, k=3):
|
| 43 |
-
"""Retrieve top-k similar rows from dataset"""
|
| 44 |
-
if not query.strip():
|
| 45 |
-
return []
|
| 46 |
query_vec = embed_model.encode([query], convert_to_tensor=True).cpu().numpy()
|
| 47 |
-
D, I = index.search(query_vec,
|
| 48 |
results = [df.iloc[i]["text"] for i in I[0]]
|
| 49 |
return results
|
| 50 |
|
| 51 |
-
def generate_with_rag(prompt,
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
if not context:
|
| 58 |
-
return "β οΈ No relevant context found in dataset."
|
| 59 |
-
context_str = "\n".join(context[:k])
|
| 60 |
-
|
| 61 |
-
# Step 2: Build grounded structured prompt
|
| 62 |
rag_prompt = f"""
|
| 63 |
-
You are a
|
| 64 |
-
Use the following supporting
|
| 65 |
{context_str}
|
| 66 |
|
| 67 |
-
Task: Generate a
|
| 68 |
{prompt}
|
| 69 |
-
|
| 70 |
-
Format your answer clearly with:
|
| 71 |
-
- π Campaign Title
|
| 72 |
-
- β¨ Tagline
|
| 73 |
-
- π§βπ€βπ§ Target Audience
|
| 74 |
-
- π― Key Selling Points
|
| 75 |
-
- π¬ Creative Idea
|
| 76 |
"""
|
| 77 |
|
| 78 |
-
# Step 3:
|
| 79 |
inputs = tokenizer(rag_prompt, return_tensors="pt").to(model.device)
|
| 80 |
outputs = model.generate(
|
| 81 |
**inputs,
|
| 82 |
-
max_length=
|
| 83 |
-
temperature=
|
| 84 |
-
top_p=0.9
|
| 85 |
-
do_sample=True
|
| 86 |
)
|
| 87 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 88 |
|
| 89 |
-
def
|
| 90 |
-
"""
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
# -------------------------------
|
| 97 |
# Gradio UI
|
| 98 |
# -------------------------------
|
| 99 |
-
with gr.Blocks() as demo:
|
| 100 |
-
|
| 101 |
-
gr.
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
if __name__ == "__main__":
|
| 120 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
|
|
|
|
|
|
| 3 |
import faiss
|
| 4 |
import torch
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
|
| 8 |
# -------------------------------
|
| 9 |
# Load dataset
|
| 10 |
# -------------------------------
|
| 11 |
+
file_path = "marketing-campaigns.csv" # file uploaded in Hugging Face space
|
| 12 |
df = pd.read_csv(file_path)
|
| 13 |
+
df = df.dropna() # drop completely empty rows
|
| 14 |
+
df["text"] = df.astype(str).agg(" | ".join, axis=1) # merge all cols into text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# -------------------------------
|
| 17 |
# Embeddings + FAISS
|
|
|
|
| 25 |
index.add(embeddings_np)
|
| 26 |
|
| 27 |
# -------------------------------
|
| 28 |
+
# Load LLM (default Phi-4-mini)
|
| 29 |
# -------------------------------
|
| 30 |
+
model_choices = {
|
| 31 |
+
"openai/gpt-oss-120b": "microsoft/phi-4-mini",
|
| 32 |
+
"openai/gpt-oss-20b": "microsoft/phi-4-mini" # placeholder, can map to another HF model
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
current_model_id = "openai/gpt-oss-120b"
|
| 36 |
+
hf_model = model_choices[current_model_id]
|
| 37 |
+
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_model)
|
| 39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
+
hf_model, torch_dtype=torch.float32, device_map="auto"
|
| 41 |
+
)
|
| 42 |
|
| 43 |
# -------------------------------
|
| 44 |
+
# RAG Functions
|
| 45 |
# -------------------------------
|
| 46 |
def retrieve_context(query, k=3):
|
|
|
|
|
|
|
|
|
|
| 47 |
query_vec = embed_model.encode([query], convert_to_tensor=True).cpu().numpy()
|
| 48 |
+
D, I = index.search(query_vec, k)
|
| 49 |
results = [df.iloc[i]["text"] for i in I[0]]
|
| 50 |
return results
|
| 51 |
|
| 52 |
+
def generate_with_rag(prompt, temperature=0.8, max_tokens=250):
|
| 53 |
+
# Step 1: Retrieve context
|
| 54 |
+
context = retrieve_context(prompt, k=3)
|
| 55 |
+
context_str = "\n".join(context)
|
| 56 |
+
|
| 57 |
+
# Step 2: Construct grounded prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
rag_prompt = f"""
|
| 59 |
+
You are a creative AI campaign assistant.
|
| 60 |
+
Use the following supporting data to ground your answer:
|
| 61 |
{context_str}
|
| 62 |
|
| 63 |
+
Task: Generate a unique and creative marketing campaign idea for:
|
| 64 |
{prompt}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
"""
|
| 66 |
|
| 67 |
+
# Step 3: Generate
|
| 68 |
inputs = tokenizer(rag_prompt, return_tensors="pt").to(model.device)
|
| 69 |
outputs = model.generate(
|
| 70 |
**inputs,
|
| 71 |
+
max_length=max_tokens,
|
| 72 |
+
temperature=temperature,
|
| 73 |
+
top_p=0.9
|
|
|
|
| 74 |
)
|
| 75 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 76 |
|
| 77 |
+
def switch_model(model_choice):
|
| 78 |
+
"""Switch between available models."""
|
| 79 |
+
global model, tokenizer, current_model_id
|
| 80 |
+
hf_model = model_choices.get(model_choice, "microsoft/phi-4-mini")
|
| 81 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_model)
|
| 82 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 83 |
+
hf_model, torch_dtype=torch.float32, device_map="auto"
|
| 84 |
+
)
|
| 85 |
+
current_model_id = model_choice
|
| 86 |
+
return gr.update(visible=(model_choice=="openai/gpt-oss-120b")), gr.update(visible=(model_choice=="openai/gpt-oss-20b")), model_choice
|
| 87 |
+
|
| 88 |
+
# -------------------------------
|
| 89 |
+
# Custom CSS
|
| 90 |
+
# -------------------------------
|
| 91 |
+
custom_css = """
|
| 92 |
+
.gradio-container {
|
| 93 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #4facfe 75%, #00f2fe 100%);
|
| 94 |
+
background-size: 400% 400%;
|
| 95 |
+
animation: gradient-animation 15s ease infinite;
|
| 96 |
+
min-height: 100vh;
|
| 97 |
+
}
|
| 98 |
+
@keyframes gradient-animation {
|
| 99 |
+
0% { background-position: 0% 50%; }
|
| 100 |
+
50% { background-position: 100% 50%; }
|
| 101 |
+
100% { background-position: 0% 50%; }
|
| 102 |
+
}
|
| 103 |
+
.main-container {
|
| 104 |
+
background-color: rgba(255, 255, 255, 0.95);
|
| 105 |
+
backdrop-filter: blur(10px);
|
| 106 |
+
border-radius: 20px;
|
| 107 |
+
padding: 20px;
|
| 108 |
+
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
|
| 109 |
+
border: 1px solid rgba(255, 255, 255, 0.18);
|
| 110 |
+
margin: 10px;
|
| 111 |
+
}
|
| 112 |
+
"""
|
| 113 |
|
| 114 |
# -------------------------------
|
| 115 |
# Gradio UI
|
| 116 |
# -------------------------------
|
| 117 |
+
with gr.Blocks(fill_height=True, theme=gr.themes.Soft, css=custom_css) as demo:
|
| 118 |
+
# Top badges
|
| 119 |
+
with gr.Row(elem_classes="badge-container"):
|
| 120 |
+
gr.HTML("""
|
| 121 |
+
<div style="display: flex; justify-content: center; align-items: center; gap: 15px;">
|
| 122 |
+
<a href="https://huggingface.co/spaces/VIDraft/gpt-oss-RAG" target="_blank">
|
| 123 |
+
<img src="https://img.shields.io/static/v1?label=gpt-oss-20b&message=RAG&color=%23000080&labelColor=%23ffa500&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
|
| 124 |
+
</a>
|
| 125 |
+
<a href="https://discord.gg/openfreeai" target="_blank">
|
| 126 |
+
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%23000080&labelColor=%23ffa500&logo=discord&logoColor=white&style=for-the-badge" alt="badge">
|
| 127 |
+
</a>
|
| 128 |
+
</div>
|
| 129 |
+
""")
|
| 130 |
+
|
| 131 |
+
with gr.Row():
|
| 132 |
+
# Sidebar
|
| 133 |
+
with gr.Column(scale=1):
|
| 134 |
+
with gr.Group(elem_classes="main-container"):
|
| 135 |
+
gr.Markdown("# π Inference Provider")
|
| 136 |
+
model_dropdown = gr.Dropdown(
|
| 137 |
+
choices=list(model_choices.keys()),
|
| 138 |
+
value=current_model_id,
|
| 139 |
+
label="π Select Model"
|
| 140 |
+
)
|
| 141 |
+
reload_btn = gr.Button("π Apply Model Change", variant="primary")
|
| 142 |
+
|
| 143 |
+
with gr.Accordion("βοΈ Advanced Options", open=False):
|
| 144 |
+
temperature = gr.Slider(
|
| 145 |
+
minimum=0, maximum=2, value=0.8, step=0.1, label="Temperature"
|
| 146 |
+
)
|
| 147 |
+
max_tokens = gr.Slider(
|
| 148 |
+
minimum=50, maximum=1024, value=250, step=10, label="Max Tokens"
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# Main chat area
|
| 152 |
+
with gr.Column(scale=3):
|
| 153 |
+
with gr.Group(elem_classes="main-container"):
|
| 154 |
+
gr.Markdown("## π¬ RAG-powered Creative Campaign Assistant")
|
| 155 |
+
|
| 156 |
+
query = gr.Textbox(label="Enter campaign idea / theme", lines=2)
|
| 157 |
+
output = gr.Textbox(label="Generated Campaign Script", lines=10)
|
| 158 |
+
|
| 159 |
+
btn = gr.Button("β¨ Generate with RAG")
|
| 160 |
+
|
| 161 |
+
btn.click(
|
| 162 |
+
generate_with_rag,
|
| 163 |
+
inputs=[query, temperature, max_tokens],
|
| 164 |
+
outputs=output
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
with gr.Column(visible=True) as model_120b_container:
|
| 168 |
+
gr.Markdown("### Active Model: openai/gpt-oss-120b")
|
| 169 |
+
with gr.Column(visible=False) as model_20b_container:
|
| 170 |
+
gr.Markdown("### Active Model: openai/gpt-oss-20b")
|
| 171 |
+
|
| 172 |
+
reload_btn.click(
|
| 173 |
+
fn=switch_model,
|
| 174 |
+
inputs=[model_dropdown],
|
| 175 |
+
outputs=[model_120b_container, model_20b_container, gr.State(current_model_id)]
|
| 176 |
+
)
|
| 177 |
|
| 178 |
if __name__ == "__main__":
|
| 179 |
demo.launch()
|