File size: 1,371 Bytes
a120af4
20aadca
a120af4
20aadca
a120af4
20aadca
a120af4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20aadca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import spaces
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_id = "PhysicsWallahAI/Aryabhata-1.0"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

stop_strings = [
    "<|im_end|>",
    "<|end|>",
    "<im_start|>",
    "⁠```python\n",
    "⁠<|im_start|>",
    "]}}]}}]",
]


def strip_bad_tokens(s, stop_strings):
    for suffix in stop_strings:
        if s.endswith(suffix):
            return s[: -len(suffix)]
    return s


generation_config = GenerationConfig(max_new_tokens=4096, stop_strings=stop_strings)


@spaces.GPU
def greet(prompt: str):
    messages = [
        {
            "role": "system",
            "content": "Think step-by-step; put only the final answer inside \\boxed{}.",
        },
        {"role": "user", "content": prompt},
    ]
    text = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    inputs = tokenizer([text], return_tensors="pt")
    outputs = model.generate(
        **inputs, generation_config=generation_config, tokenizer=tokenizer
    )
    return strip_bad_tokens(
        tokenizer.decode(outputs[0], skip_special_tokens=True), stop_strings
    )


demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="Aryabhatta Demo")
demo.launch()