Spaces:
Runtime error
Runtime error
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| from PIL import Image, ImageOps | |
| from transformers import AutoModelForImageSegmentation | |
| from torchvision import transforms | |
| torch.set_float32_matmul_precision('high') | |
| torch.jit.script = lambda f: f | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| def refine_foreground(image, mask, r=90): | |
| if mask.size != image.size: | |
| mask = mask.resize(image.size) | |
| image = np.array(image) / 255.0 | |
| mask = np.array(mask) / 255.0 | |
| estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) | |
| image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) | |
| return image_masked | |
| def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): | |
| alpha = alpha[:, :, None] | |
| F, blur_B = FB_blur_fusion_foreground_estimator( | |
| image, image, image, alpha, r) | |
| return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] | |
| def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): | |
| if isinstance(image, Image.Image): | |
| image = np.array(image) / 255.0 | |
| blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] | |
| blurred_FA = cv2.blur(F * alpha, (r, r)) | |
| blurred_F = blurred_FA / (blurred_alpha + 1e-5) | |
| blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) | |
| blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) | |
| F = blurred_F + alpha * \ | |
| (image - alpha * blurred_F - (1 - alpha) * blurred_B) | |
| F = np.clip(F, 0, 1) | |
| return F, blurred_B | |
| class ImagePreprocessor(): | |
| def __init__(self, resolution=(1024, 1024)) -> None: | |
| self.transform_image = transforms.Compose([ | |
| transforms.Resize(resolution), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ]) | |
| def proc(self, image: Image.Image) -> torch.Tensor: | |
| image = self.transform_image(image) | |
| return image | |
| birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet-matting', trust_remote_code=True) | |
| birefnet.to(device) | |
| birefnet.eval() | |
| def remove_background(image): | |
| if image is None: | |
| raise gr.Error("Please upload an image.") | |
| image_ori = Image.fromarray(image).convert('RGB') | |
| original_size = image_ori.size | |
| # Preprocess the image | |
| image_preprocessor = ImagePreprocessor(resolution=(1024, 1024)) | |
| image_proc = image_preprocessor.proc(image_ori) | |
| image_proc = image_proc.unsqueeze(0) | |
| # Prediction | |
| with torch.no_grad(): | |
| preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| # Process Results | |
| pred_pil = transforms.ToPILImage()(pred) | |
| pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size | |
| # Create reverse mask | |
| reverse_mask = Image.new('L', original_size) | |
| reverse_mask.paste(ImageOps.invert(pred_pil)) | |
| # Create foreground image (object with transparent background) | |
| foreground = image_ori.copy() | |
| foreground.putalpha(pred_pil) | |
| # Create background image | |
| background = image_ori.copy() | |
| background.putalpha(reverse_mask) | |
| torch.cuda.empty_cache() | |
| # Save all images | |
| mask_path = "mask.png" | |
| pred_pil.save(mask_path) | |
| reverse_mask_path = "reverse_mask.png" | |
| reverse_mask.save(reverse_mask_path) | |
| foreground_path = "foreground.png" | |
| foreground.save(foreground_path) | |
| background_path = "background.png" | |
| background.save(background_path) | |
| return mask_path, reverse_mask_path, foreground_path, background_path | |
| license_text = """ | |
| MIT License | |
| Copyright (c) 2024 ZhengPeng | |
| Permission is hereby granted, free of charge, to any person obtaining a copy | |
| of this software and associated documentation files (the "Software"), to deal | |
| in the Software without restriction, including without limitation the rights | |
| to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| copies of the Software, and to permit persons to whom the Software is | |
| furnished to do so, subject to the following conditions: | |
| The above copyright notice and this permission notice shall be included in all | |
| copies or substantial portions of the Software. | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| SOFTWARE. | |
| """ | |
| css = """ | |
| body { | |
| font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; | |
| } | |
| .gradio-container { | |
| background: white; | |
| } | |
| #component-0 button { | |
| font-family: inherit !important; | |
| font-size: 16px !important; | |
| font-weight: bold !important; | |
| color: #000000 !important; | |
| background: linear-gradient( | |
| 135deg, | |
| #e0f7fa, #e8f5e9, #fff9c4, #ffebee, | |
| #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6 | |
| ) !important; | |
| background-size: 400% 400% !important; | |
| animation: gradient-animation 15s ease infinite !important; | |
| border: 2px solid black !important; | |
| border-radius: 10px !important; | |
| } | |
| #component-0 button:hover { | |
| background: linear-gradient( | |
| 135deg, | |
| #b2ebf2, #c8e6c9, #fff176, #ffcdd2, | |
| #e1bee7, #b3e5fc, #ffe0b2, #c5cae9 | |
| ) !important; | |
| background-size: 400% 400% !important; | |
| animation: gradient-animation 15s ease infinite !important; | |
| } | |
| @keyframes gradient-animation { | |
| 0% { background-position: 0% 50%; } | |
| 50% { background-position: 100% 50%; } | |
| 100% { background-position: 0% 50%; } | |
| } | |
| footer { | |
| text-align: center; | |
| margin-top: 20px; | |
| } | |
| .license-link { | |
| color: #007bff; | |
| text-decoration: none; | |
| cursor: pointer; | |
| } | |
| .license-link:hover { | |
| text-decoration: underline; | |
| } | |
| .modal { | |
| display: none; | |
| position: fixed; | |
| z-index: 1000; | |
| left: 0; | |
| top: 0; | |
| width: 100%; | |
| height: 100%; | |
| overflow: auto; | |
| background-color: rgba(0,0,0,0.4); | |
| } | |
| .modal-content { | |
| background-color: #fefefe; | |
| margin: 15% auto; | |
| padding: 20px; | |
| border: 1px solid #888; | |
| width: 80%; | |
| max-width: 600px; | |
| } | |
| .close { | |
| color: #aaa; | |
| float: right; | |
| font-size: 28px; | |
| font-weight: bold; | |
| } | |
| .close:hover, | |
| .close:focus { | |
| color: black; | |
| text-decoration: none; | |
| cursor: pointer; | |
| } | |
| """ | |
| js = """ | |
| function setupLicenseModal() { | |
| var modal = document.createElement('div'); | |
| modal.className = 'modal'; | |
| modal.innerHTML = ` | |
| <div class="modal-content"> | |
| <span class="close">×</span> | |
| <h2>License</h2> | |
| <pre>${license_text}</pre> | |
| </div> | |
| `; | |
| document.body.appendChild(modal); | |
| var link = document.createElement('a'); | |
| link.href = '#'; | |
| link.className = 'license-link'; | |
| link.textContent = 'License'; | |
| link.onclick = function(e) { | |
| e.preventDefault(); | |
| modal.style.display = 'block'; | |
| }; | |
| var footer = document.createElement('footer'); | |
| footer.appendChild(link); | |
| document.body.appendChild(footer); | |
| var span = modal.querySelector('.close'); | |
| span.onclick = function() { | |
| modal.style.display = 'none'; | |
| }; | |
| window.onclick = function(event) { | |
| if (event.target == modal) { | |
| modal.style.display = 'none'; | |
| } | |
| }; | |
| } | |
| if (window.gradio_config.version.startsWith('3')) { | |
| setupLicenseModal(); | |
| } else { | |
| document.addEventListener('DOMContentLoaded', setupLicenseModal); | |
| } | |
| """ | |
| iface = gr.Interface( | |
| fn=remove_background, | |
| inputs=gr.Image(type="numpy"), | |
| outputs=[ | |
| gr.Image(type="filepath", label="Mask"), | |
| gr.Image(type="filepath", label="Reverse Mask"), | |
| gr.Image(type="filepath", label="Foreground"), | |
| gr.Image(type="filepath", label="Background") | |
| ], | |
| allow_flagging="never", | |
| css=css, | |
| js=js, | |
| elem_id="remove-background" | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch(debug=True) |