Spaces:
Runtime error
Runtime error
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| from gradio.themes.base import Base | |
| from gradio.themes.utils import colors, fonts, sizes | |
| from PIL import Image, ImageOps | |
| from transformers import AutoModelForImageSegmentation | |
| from torchvision import transforms | |
| class WhiteTheme(Base): | |
| def __init__( | |
| self, | |
| *, | |
| primary_hue: colors.Color | str = colors.orange, | |
| font: fonts.Font | str | tuple[fonts.Font | str, ...] = ( | |
| fonts.GoogleFont("Inter"), | |
| "ui-sans-serif", | |
| "system-ui", | |
| "sans-serif", | |
| ), | |
| font_mono: fonts.Font | str | tuple[fonts.Font | str, ...] = ( | |
| fonts.GoogleFont("Inter"), | |
| "ui-monospace", | |
| "system-ui", | |
| "monospace", | |
| ) | |
| ): | |
| super().__init__( | |
| primary_hue=primary_hue, | |
| font=font, | |
| font_mono=font_mono, | |
| ) | |
| self.set( | |
| # Light mode specific colors | |
| background_fill_primary="*primary_50", | |
| background_fill_secondary="white", | |
| border_color_primary="*primary_300", | |
| # General colors that should stay constant | |
| body_background_fill="white", | |
| body_background_fill_dark="white", | |
| block_background_fill="white", | |
| block_background_fill_dark="white", | |
| panel_background_fill="white", | |
| panel_background_fill_dark="white", | |
| body_text_color="black", | |
| body_text_color_dark="black", | |
| block_label_text_color="black", | |
| block_label_text_color_dark="black", | |
| block_border_color="white", | |
| panel_border_color="white", | |
| input_border_color="lightgray", | |
| input_background_fill="white", | |
| input_background_fill_dark="white", | |
| shadow_drop="none" | |
| ) | |
| torch.set_float32_matmul_precision('high') | |
| torch.jit.script = lambda f: f | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| def refine_foreground(image, mask, r=90): | |
| if mask.size != image.size: | |
| mask = mask.resize(image.size) | |
| image = np.array(image) / 255.0 | |
| mask = np.array(mask) / 255.0 | |
| estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) | |
| image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) | |
| return image_masked | |
| def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): | |
| alpha = alpha[:, :, None] | |
| F, blur_B = FB_blur_fusion_foreground_estimator( | |
| image, image, image, alpha, r) | |
| return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] | |
| def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): | |
| if isinstance(image, Image.Image): | |
| image = np.array(image) / 255.0 | |
| blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] | |
| blurred_FA = cv2.blur(F * alpha, (r, r)) | |
| blurred_F = blurred_FA / (blurred_alpha + 1e-5) | |
| blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) | |
| blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) | |
| F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B) | |
| F = np.clip(F, 0, 1) | |
| return F, blurred_B | |
| class ImagePreprocessor(): | |
| def __init__(self, resolution=(1024, 1024)) -> None: | |
| self.transform_image = transforms.Compose([ | |
| transforms.Resize(resolution), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], | |
| [0.229, 0.224, 0.225]), | |
| ]) | |
| def proc(self, image: Image.Image) -> torch.Tensor: | |
| image = self.transform_image(image) | |
| return image | |
| # Load the model | |
| birefnet = AutoModelForImageSegmentation.from_pretrained( | |
| 'zhengpeng7/BiRefNet-matting', trust_remote_code=True) | |
| birefnet.to(device) | |
| birefnet.eval() | |
| def remove_background_wrapper(image): | |
| if image is None: | |
| raise gr.Error("Please upload an image.") | |
| image_ori = Image.fromarray(image).convert('RGB') | |
| foreground, background, pred_pil, reverse_mask = remove_background(image_ori) | |
| return foreground, background, pred_pil, reverse_mask | |
| def remove_background(image_ori): | |
| original_size = image_ori.size | |
| image_preprocessor = ImagePreprocessor(resolution=(1024, 1024)) | |
| image_proc = image_preprocessor.proc(image_ori) | |
| image_proc = image_proc.unsqueeze(0) | |
| with torch.no_grad(): | |
| preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| pred_pil = pred_pil.resize(original_size, Image.BICUBIC) | |
| reverse_mask = ImageOps.invert(pred_pil) | |
| foreground = image_ori.copy() | |
| foreground.putalpha(pred_pil) | |
| background = image_ori.copy() | |
| background.putalpha(reverse_mask) | |
| torch.cuda.empty_cache() | |
| return foreground, background, pred_pil, reverse_mask | |
| # Custom CSS for styling | |
| custom_css = """ | |
| .title-container { | |
| text-align: center; | |
| padding: 10px 0; | |
| } | |
| #title { | |
| font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; | |
| font-size: 36px; | |
| font-weight: bold; | |
| color: #000000; | |
| padding: 10px; | |
| border-radius: 10px; | |
| display: inline-block; | |
| background: linear-gradient( | |
| 135deg, | |
| #e0f7fa, #e8f5e9, #fff9c4, #ffebee, | |
| #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6 | |
| ); | |
| background-size: 400% 400%; | |
| animation: gradient-animation 15s ease infinite; | |
| } | |
| @keyframes gradient-animation { | |
| 0% { background-position: 0% 50%; } | |
| 50% { background-position: 100% 50%; } | |
| 100% { background-position: 0% 50%; } | |
| } | |
| #submit-button { | |
| background: linear-gradient( | |
| 135deg, | |
| #e0f7fa, #e8f5e9, #fff9c4, #ffebee, | |
| #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6 | |
| ); | |
| background-size: 400% 400%; | |
| animation: gradient-animation 15s ease infinite; | |
| border-radius: 12px; | |
| color: black; | |
| } | |
| /* Force light mode styles */ | |
| :root, :root[data-theme='light'], :root[data-theme='dark'] { | |
| --body-background-fill: white !important; | |
| --background-fill-primary: white !important; | |
| --background-fill-secondary: white !important; | |
| --block-background-fill: white !important; | |
| --panel-background-fill: white !important; | |
| --body-text-color: black !important; | |
| --block-label-text-color: black !important; | |
| } | |
| /* Additional overrides for dark mode */ | |
| @media (prefers-color-scheme: dark) { | |
| :root { | |
| color-scheme: light; | |
| } | |
| } | |
| """ | |
| with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo: | |
| gr.HTML(''' | |
| <div class="title-container"> | |
| <div id="title"> | |
| <span>{.</span><span id="typed-text"></span><span>}</span> | |
| </div> | |
| </div> | |
| <script> | |
| (function() { | |
| const text = "image"; | |
| const typedTextSpan = document.getElementById("typed-text"); | |
| let charIndex = 0; | |
| function type() { | |
| if (charIndex < text.length) { | |
| typedTextSpan.textContent += text[charIndex]; | |
| charIndex++; | |
| setTimeout(type, 150); | |
| } | |
| } | |
| setTimeout(type, 150); | |
| })(); | |
| </script> | |
| ''') | |
| # Interface setup with input and output | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.Image(type="numpy", sources=['upload'], label="Upload Image") | |
| btn = gr.Button("Process Image", elem_id="submit-button") | |
| with gr.Column(): | |
| output_foreground = gr.Image(type="pil", label="Foreground") | |
| output_background = gr.Image(type="pil", label="Background") | |
| output_foreground_mask = gr.Image(type="pil", label="Foreground Mask") | |
| output_background_mask = gr.Image(type="pil", label="Background Mask") | |
| # Link the button to the processing function | |
| btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[ | |
| output_foreground, output_background, output_foreground_mask, output_background_mask]) | |
| demo.launch(debug=True) |