import gradio as gr import torch from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor from qwen_omni_utils import process_mm_info import spaces MODEL_ID = "Qwen/Qwen2.5-Omni-7B" if False else "Qwen/Qwen2.5-Omni-7B" # keep explicit string model = Qwen2_5OmniForConditionalGeneration.from_pretrained( MODEL_ID, torch_dtype="auto", device_map="auto", ) model.disable_talker() processor = Qwen2_5OmniProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) @spaces.GPU def run_omni(audio_path: str, instruction: str) -> str: if not audio_path: return "Please upload an audio file." system_text = ( "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, " "capable of perceiving auditory and visual inputs, as well as generating text and speech." ) conversation = [ { "role": "system", "content": [{"type": "text", "text": system_text}], }, { "role": "user", "content": [ {"type": "audio", "audio_url": audio_path}, {"type": "text", "text": instruction}, ], }, ] text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios, images, videos = process_mm_info(conversation, use_audio_in_video=False) inputs = processor( text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, ) inputs = inputs.to(model.device) output_ids = model.generate(**inputs, max_new_tokens=4096) output_ids = output_ids[:, inputs["input_ids"].shape[1]:] response = processor.batch_decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] return response with gr.Blocks(title="Qwen2.5 Omni (Audio) Demo") as demo: gr.Markdown("# Qwen2.5-Omni (Audio) Demo") gr.Markdown("Upload an audio file and provide an instruction for the model.") with gr.Row(): with gr.Column(): audio_input = gr.Audio(type="filepath", label="Upload Audio") instruction = gr.Textbox( label="Instruction", value="Transcribe the audio, then summarize it in one sentence.", ) submit_btn = gr.Button("Run", variant="primary") with gr.Column(): output_text = gr.Textbox(label="Response", lines=14) submit_btn.click(run_omni, [audio_input, instruction], output_text) if __name__ == "__main__": demo.queue().launch(share=False, ssr_mode=False)