import gradio as gr from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor import librosa import spaces MODEL_ID = "Qwen/Qwen2-Audio-7B-Instruct" processor = AutoProcessor.from_pretrained(MODEL_ID) model = Qwen2AudioForConditionalGeneration.from_pretrained(MODEL_ID, device_map="auto") @spaces.GPU def run_qwen2audio(audio_path: str, instruction: str) -> str: if not audio_path: return "Please upload an audio file." conversation = [ { "role": "user", "content": [ {"type": "audio", "audio_url": audio_path}, {"type": "text", "text": instruction}, ], } ] text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios = [] target_sr = processor.feature_extractor.sampling_rate audio, _ = librosa.load(audio_path, sr=target_sr) audios.append(audio) inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True) inputs = inputs.to(model.device) output_ids = model.generate(**inputs, max_new_tokens=4096) output_ids = output_ids[:, inputs.input_ids.size(1):] response = processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return response with gr.Blocks(title="Qwen2-Audio Demo") as demo: gr.Markdown("# Qwen2-Audio Demo") gr.Markdown("Upload audio and run an instruction with Qwen2-Audio.") with gr.Row(): with gr.Column(): audio_input = gr.Audio(type="filepath", label="Upload Audio") instruction = gr.Textbox(label="Instruction", value="Transcribe the audio.") submit_btn = gr.Button("Run", variant="primary") with gr.Column(): output_text = gr.Textbox(label="Response", lines=12) submit_btn.click(run_qwen2audio, [audio_input, instruction], output_text) if __name__ == "__main__": demo.queue().launch(share=False, ssr_mode=False)