Spaces:
Build error
Build error
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| from glob import glob | |
| from typing import Tuple, Optional | |
| from PIL import Image | |
| from gradio_imageslider import ImageSlider | |
| from transformers import AutoModelForImageSegmentation | |
| from torchvision import transforms | |
| import requests | |
| from io import BytesIO | |
| import zipfile | |
| import random | |
| torch.set_float32_matmul_precision('high') | |
| torch.jit.script = lambda f: f | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| ### 이미지 후처리 함수들 ### | |
| def refine_foreground(image, mask, r=90): | |
| if mask.size != image.size: | |
| mask = mask.resize(image.size) | |
| image_np = np.array(image) / 255.0 | |
| mask_np = np.array(mask) / 255.0 | |
| estimated_foreground = FB_blur_fusion_foreground_estimator_2(image_np, mask_np, r=r) | |
| image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) | |
| return image_masked | |
| def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): | |
| alpha = alpha[:, :, None] | |
| F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r) | |
| return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] | |
| def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): | |
| if isinstance(image, Image.Image): | |
| image = np.array(image) / 255.0 | |
| blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] | |
| blurred_FA = cv2.blur(F * alpha, (r, r)) | |
| blurred_F = blurred_FA / (blurred_alpha + 1e-5) | |
| blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) | |
| blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) | |
| F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B) | |
| F = np.clip(F, 0, 1) | |
| return F, blurred_B | |
| class ImagePreprocessor(): | |
| def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: | |
| self.transform_image = transforms.Compose([ | |
| transforms.Resize(resolution), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ]) | |
| def proc(self, image: Image.Image) -> torch.Tensor: | |
| image = self.transform_image(image) | |
| return image | |
| usage_to_weights_file = { | |
| 'General': 'BiRefNet', | |
| 'General-HR': 'BiRefNet_HR', | |
| 'General-Lite': 'BiRefNet_lite', | |
| 'General-Lite-2K': 'BiRefNet_lite-2K', | |
| 'Matting': 'BiRefNet-matting', | |
| 'Portrait': 'BiRefNet-portrait', | |
| 'DIS': 'BiRefNet-DIS5K', | |
| 'HRSOD': 'BiRefNet-HRSOD', | |
| 'COD': 'BiRefNet-COD', | |
| 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs', | |
| 'General-legacy': 'BiRefNet-legacy' | |
| } | |
| # 초기 모델 로딩 (기본: General) | |
| birefnet = AutoModelForImageSegmentation.from_pretrained( | |
| '/'.join(('zhengpeng7', usage_to_weights_file['General'])), | |
| trust_remote_code=True | |
| ) | |
| birefnet.to(device) | |
| birefnet.eval(); birefnet.half() | |
| def predict(images, resolution, weights_file): | |
| assert images is not None, 'Images cannot be None.' | |
| global birefnet | |
| # 선택된 가중치로 모델 재로딩 | |
| _weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General'])) | |
| print('Using weights: {}.'.format(_weights_file)) | |
| birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True) | |
| birefnet.to(device) | |
| birefnet.eval(); birefnet.half() | |
| try: | |
| resolution_list = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] | |
| except: | |
| if weights_file == 'General-HR': | |
| resolution_list = [2048, 2048] | |
| elif weights_file == 'General-Lite-2K': | |
| resolution_list = [2560, 1440] | |
| else: | |
| resolution_list = [1024, 1024] | |
| print('Invalid resolution input. Automatically changed to default.') | |
| # 이미지가 단일 객체인지, 리스트(배치)인지 확인 | |
| if isinstance(images, list): | |
| tab_is_batch = True | |
| else: | |
| images = [images] | |
| tab_is_batch = False | |
| save_paths = [] | |
| save_dir = 'preds-BiRefNet' | |
| if tab_is_batch and not os.path.exists(save_dir): | |
| os.makedirs(save_dir) | |
| outputs = [] | |
| for idx, image_src in enumerate(images): | |
| if isinstance(image_src, str): | |
| if os.path.isfile(image_src): | |
| image_ori = Image.open(image_src) | |
| else: | |
| response = requests.get(image_src) | |
| image_data = BytesIO(response.content) | |
| image_ori = Image.open(image_data) | |
| else: | |
| if isinstance(image_src, np.ndarray): | |
| image_ori = Image.fromarray(image_src) | |
| else: | |
| image_ori = image_src.convert('RGB') | |
| image = image_ori.convert('RGB') | |
| preprocessor = ImagePreprocessor(resolution=tuple(resolution_list)) | |
| image_proc = preprocessor.proc(image).unsqueeze(0) | |
| with torch.no_grad(): | |
| preds = birefnet(image_proc.to(device).half())[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| image_masked = refine_foreground(image, pred_pil) | |
| image_masked.putalpha(pred_pil.resize(image.size)) | |
| torch.cuda.empty_cache() | |
| if tab_is_batch: | |
| file_path = os.path.join(save_dir, "{}.png".format( | |
| os.path.splitext(os.path.basename(image_src))[0] if isinstance(image_src, str) else f"img_{idx}" | |
| )) | |
| image_masked.save(file_path) | |
| save_paths.append(file_path) | |
| outputs.append(image_masked) | |
| else: | |
| outputs = [image_masked, image_ori] | |
| if tab_is_batch: | |
| zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir)) | |
| with zipfile.ZipFile(zip_file_path, 'w') as zipf: | |
| for file in save_paths: | |
| zipf.write(file, os.path.basename(file)) | |
| return save_paths, zip_file_path | |
| else: | |
| # 반환값을 리스트 형태로 만들어 ImageSlider에서 표시되도록 함. | |
| return outputs | |
| # 예제 데이터 (이미지, URL, 배치) | |
| examples_image = [[path, "1024x1024", "General"] for path in glob('examples/*')] | |
| examples_text = [[url, "1024x1024", "General"] for url in ["https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"]] | |
| examples_batch = [[file, "1024x1024", "General"] for file in glob('examples/*')] | |
| descriptions = ( | |
| "Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n" | |
| "The resolution used in our training was `1024x1024`, which is suggested for good results! " | |
| "`2048x2048` is suggested for BiRefNet_HR.\n" | |
| "Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n" | |
| "We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access." | |
| ) | |
| # UI 개선을 위한 CSS | |
| css = """ | |
| body { | |
| background: linear-gradient(135deg, #667eea, #764ba2); | |
| font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; | |
| color: #333; | |
| margin: 0; | |
| padding: 0; | |
| } | |
| .gradio-container { | |
| background: rgba(255, 255, 255, 0.95); | |
| border-radius: 15px; | |
| padding: 30px 40px; | |
| box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3); | |
| margin: 40px auto; | |
| max-width: 1200px; | |
| } | |
| .gradio-container h1 { | |
| color: #333; | |
| text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2); | |
| } | |
| .fillable { | |
| width: 95% !important; | |
| max-width: unset !important; | |
| } | |
| #examples_container { | |
| margin: auto; | |
| width: 90%; | |
| } | |
| #examples_row { | |
| justify-content: center; | |
| } | |
| .sidebar { | |
| background: rgba(255, 255, 255, 0.98); | |
| border-radius: 10px; | |
| padding: 20px; | |
| box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2); | |
| } | |
| button, .btn { | |
| background: linear-gradient(90deg, #ff8a00, #e52e71); | |
| border: none; | |
| color: #fff; | |
| padding: 12px 24px; | |
| text-transform: uppercase; | |
| font-weight: bold; | |
| letter-spacing: 1px; | |
| border-radius: 5px; | |
| cursor: pointer; | |
| transition: transform 0.2s ease-in-out; | |
| } | |
| button:hover, .btn:hover { | |
| transform: scale(1.05); | |
| } | |
| """ | |
| title = """ | |
| <h1 align="center" style="margin-bottom: 0.2em;">BiRefNet Demo for Subject Extraction</h1> | |
| <p align="center" style="font-size:1.1em; color:#555;"> | |
| Upload an image or provide an image URL to extract the subject with high-precision segmentation. | |
| </p> | |
| """ | |
| with gr.Blocks(css=css, title="BiRefNet Demo") as demo: | |
| gr.Markdown(title) | |
| with gr.Tabs(): | |
| with gr.Tab("Image"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| image_input = gr.Image(type='pil', label='Upload an Image') | |
| resolution_input = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution") | |
| weights_radio = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights") | |
| predict_btn = gr.Button("Predict") | |
| with gr.Column(scale=2): | |
| output_slider = ImageSlider(label="BiRefNet's Prediction", type="pil") | |
| gr.Examples(examples=examples_image, inputs=[image_input, resolution_input, weights_radio], label="Examples") | |
| with gr.Tab("Text"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| image_url = gr.Textbox(label="Paste an Image URL") | |
| resolution_input_text = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution") | |
| weights_radio_text = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights") | |
| predict_btn_text = gr.Button("Predict") | |
| with gr.Column(scale=2): | |
| output_slider_text = ImageSlider(label="BiRefNet's Prediction", type="pil") | |
| gr.Examples(examples=examples_text, inputs=[image_url, resolution_input_text, weights_radio_text], label="Examples") | |
| with gr.Tab("Batch"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| file_input = gr.File(label="Upload Multiple Images", type="filepath", file_count="multiple") | |
| resolution_input_batch = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution") | |
| weights_radio_batch = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights") | |
| predict_btn_batch = gr.Button("Predict") | |
| with gr.Column(scale=2): | |
| output_gallery = gr.Gallery(label="BiRefNet's Predictions", scale=1) | |
| zip_output = gr.File(label="Download Masked Images") | |
| gr.Examples(examples=examples_batch, inputs=[file_input, resolution_input_batch, weights_radio_batch], label="Examples") | |
| with gr.Row(): | |
| gr.Markdown("<p align='center'>Model by <a href='https://huggingface.co/ZhengPeng7/BiRefNet'>ZhengPeng7/BiRefNet</a></p>") | |
| # 각 탭의 Predict 버튼과 predict 함수 연결 | |
| predict_btn.click( | |
| fn=predict, | |
| inputs=[image_input, resolution_input, weights_radio], | |
| outputs=output_slider | |
| ) | |
| predict_btn_text.click( | |
| fn=predict, | |
| inputs=[image_url, resolution_input_text, weights_radio_text], | |
| outputs=output_slider_text | |
| ) | |
| predict_btn_batch.click( | |
| fn=predict, | |
| inputs=[file_input, resolution_input_batch, weights_radio_batch], | |
| outputs=[output_gallery, zip_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=False, debug=True) | |