Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ import gradio as gr
|
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
from glob import glob
|
| 9 |
-
from typing import Tuple
|
| 10 |
|
| 11 |
from PIL import Image
|
| 12 |
from gradio_imageslider import ImageSlider
|
|
@@ -16,48 +16,40 @@ from torchvision import transforms
|
|
| 16 |
import requests
|
| 17 |
from io import BytesIO
|
| 18 |
import zipfile
|
| 19 |
-
|
| 20 |
|
| 21 |
torch.set_float32_matmul_precision('high')
|
| 22 |
torch.jit.script = lambda f: f
|
| 23 |
|
| 24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
|
| 26 |
-
###
|
| 27 |
def refine_foreground(image, mask, r=90):
|
| 28 |
if mask.size != image.size:
|
| 29 |
mask = mask.resize(image.size)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
estimated_foreground = FB_blur_fusion_foreground_estimator_2(
|
| 33 |
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
| 34 |
return image_masked
|
| 35 |
|
| 36 |
-
|
| 37 |
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
|
| 38 |
-
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
| 39 |
alpha = alpha[:, :, None]
|
| 40 |
-
F, blur_B = FB_blur_fusion_foreground_estimator(
|
| 41 |
-
image, image, image, alpha, r)
|
| 42 |
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
|
| 43 |
|
| 44 |
-
|
| 45 |
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
| 46 |
if isinstance(image, Image.Image):
|
| 47 |
image = np.array(image) / 255.0
|
| 48 |
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
| 49 |
-
|
| 50 |
blurred_FA = cv2.blur(F * alpha, (r, r))
|
| 51 |
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
|
| 52 |
-
|
| 53 |
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
| 54 |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 55 |
-
F = blurred_F + alpha *
|
| 56 |
-
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
|
| 57 |
F = np.clip(F, 0, 1)
|
| 58 |
return F, blurred_B
|
| 59 |
|
| 60 |
-
|
| 61 |
class ImagePreprocessor():
|
| 62 |
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
|
| 63 |
self.transform_image = transforms.Compose([
|
|
@@ -65,12 +57,10 @@ class ImagePreprocessor():
|
|
| 65 |
transforms.ToTensor(),
|
| 66 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 67 |
])
|
| 68 |
-
|
| 69 |
def proc(self, image: Image.Image) -> torch.Tensor:
|
| 70 |
image = self.transform_image(image)
|
| 71 |
return image
|
| 72 |
|
| 73 |
-
|
| 74 |
usage_to_weights_file = {
|
| 75 |
'General': 'BiRefNet',
|
| 76 |
'General-HR': 'BiRefNet_HR',
|
|
@@ -85,17 +75,19 @@ usage_to_weights_file = {
|
|
| 85 |
'General-legacy': 'BiRefNet-legacy'
|
| 86 |
}
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
birefnet.to(device)
|
| 90 |
birefnet.eval(); birefnet.half()
|
| 91 |
|
| 92 |
-
|
| 93 |
@spaces.GPU
|
| 94 |
def predict(images, resolution, weights_file):
|
| 95 |
-
assert
|
| 96 |
-
|
| 97 |
global birefnet
|
| 98 |
-
#
|
| 99 |
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General']))
|
| 100 |
print('Using weights: {}.'.format(_weights_file))
|
| 101 |
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
|
|
@@ -103,28 +95,30 @@ def predict(images, resolution, weights_file):
|
|
| 103 |
birefnet.eval(); birefnet.half()
|
| 104 |
|
| 105 |
try:
|
| 106 |
-
|
| 107 |
except:
|
| 108 |
if weights_file == 'General-HR':
|
| 109 |
-
|
| 110 |
elif weights_file == 'General-Lite-2K':
|
| 111 |
-
|
| 112 |
else:
|
| 113 |
-
|
| 114 |
-
print('Invalid resolution input. Automatically changed to
|
| 115 |
|
|
|
|
| 116 |
if isinstance(images, list):
|
| 117 |
-
# For tab_batch
|
| 118 |
-
save_paths = []
|
| 119 |
-
save_dir = 'preds-BiRefNet'
|
| 120 |
-
if not os.path.exists(save_dir):
|
| 121 |
-
os.makedirs(save_dir)
|
| 122 |
tab_is_batch = True
|
| 123 |
else:
|
| 124 |
images = [images]
|
| 125 |
tab_is_batch = False
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
if isinstance(image_src, str):
|
| 129 |
if os.path.isfile(image_src):
|
| 130 |
image_ori = Image.open(image_src)
|
|
@@ -133,31 +127,30 @@ def predict(images, resolution, weights_file):
|
|
| 133 |
image_data = BytesIO(response.content)
|
| 134 |
image_ori = Image.open(image_data)
|
| 135 |
else:
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
| 138 |
image = image_ori.convert('RGB')
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
image_proc = image_preprocessor.proc(image)
|
| 142 |
-
image_proc = image_proc.unsqueeze(0)
|
| 143 |
-
|
| 144 |
-
# Prediction
|
| 145 |
with torch.no_grad():
|
| 146 |
preds = birefnet(image_proc.to(device).half())[-1].sigmoid().cpu()
|
| 147 |
pred = preds[0].squeeze()
|
| 148 |
-
|
| 149 |
-
# Show Results
|
| 150 |
pred_pil = transforms.ToPILImage()(pred)
|
| 151 |
image_masked = refine_foreground(image, pred_pil)
|
| 152 |
image_masked.putalpha(pred_pil.resize(image.size))
|
| 153 |
-
|
| 154 |
torch.cuda.empty_cache()
|
| 155 |
-
|
| 156 |
if tab_is_batch:
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
if tab_is_batch:
|
| 162 |
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir))
|
| 163 |
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
|
|
@@ -165,70 +158,137 @@ def predict(images, resolution, weights_file):
|
|
| 165 |
zipf.write(file, os.path.basename(file))
|
| 166 |
return save_paths, zip_file_path
|
| 167 |
else:
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
examples_url[idx_example_url].append('1024x1024')
|
| 183 |
-
|
| 184 |
-
descriptions = ('Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n)'
|
| 185 |
-
' The resolution used in our training was `1024x1024`, which is the suggested resolution to obtain good results! `2048x2048` is suggested for BiRefNet_HR.\n'
|
| 186 |
-
' Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n'
|
| 187 |
-
' We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.')
|
| 188 |
-
|
| 189 |
-
tab_image = gr.Interface(
|
| 190 |
-
fn=predict,
|
| 191 |
-
inputs=[
|
| 192 |
-
gr.Image(label='Upload an image'),
|
| 193 |
-
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
|
| 194 |
-
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
|
| 195 |
-
],
|
| 196 |
-
outputs=ImageSlider(label="BiRefNet's prediction", type="pil"),
|
| 197 |
-
examples=examples,
|
| 198 |
-
api_name="image",
|
| 199 |
-
description=descriptions,
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
tab_text = gr.Interface(
|
| 203 |
-
fn=predict,
|
| 204 |
-
inputs=[
|
| 205 |
-
gr.Textbox(label="Paste an image URL"),
|
| 206 |
-
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
|
| 207 |
-
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
|
| 208 |
-
],
|
| 209 |
-
outputs=ImageSlider(label="BiRefNet's prediction", type="pil"),
|
| 210 |
-
examples=examples_url,
|
| 211 |
-
api_name="text",
|
| 212 |
-
description=descriptions+'\nTab-URL is partially modified from https://huggingface.co/spaces/not-lain/background-removal, thanks to this great work!',
|
| 213 |
)
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
if __name__ == "__main__":
|
| 234 |
-
demo.launch(debug=True)
|
|
|
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
from glob import glob
|
| 9 |
+
from typing import Tuple, Optional
|
| 10 |
|
| 11 |
from PIL import Image
|
| 12 |
from gradio_imageslider import ImageSlider
|
|
|
|
| 16 |
import requests
|
| 17 |
from io import BytesIO
|
| 18 |
import zipfile
|
| 19 |
+
import random
|
| 20 |
|
| 21 |
torch.set_float32_matmul_precision('high')
|
| 22 |
torch.jit.script = lambda f: f
|
| 23 |
|
| 24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
|
| 26 |
+
### ์ด๋ฏธ์ง ํ์ฒ๋ฆฌ ํจ์๋ค ###
|
| 27 |
def refine_foreground(image, mask, r=90):
|
| 28 |
if mask.size != image.size:
|
| 29 |
mask = mask.resize(image.size)
|
| 30 |
+
image_np = np.array(image) / 255.0
|
| 31 |
+
mask_np = np.array(mask) / 255.0
|
| 32 |
+
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image_np, mask_np, r=r)
|
| 33 |
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
| 34 |
return image_masked
|
| 35 |
|
|
|
|
| 36 |
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
|
|
|
|
| 37 |
alpha = alpha[:, :, None]
|
| 38 |
+
F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
|
|
|
|
| 39 |
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
|
| 40 |
|
|
|
|
| 41 |
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
| 42 |
if isinstance(image, Image.Image):
|
| 43 |
image = np.array(image) / 255.0
|
| 44 |
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
|
|
|
| 45 |
blurred_FA = cv2.blur(F * alpha, (r, r))
|
| 46 |
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
|
|
|
|
| 47 |
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
| 48 |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 49 |
+
F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
|
|
|
|
| 50 |
F = np.clip(F, 0, 1)
|
| 51 |
return F, blurred_B
|
| 52 |
|
|
|
|
| 53 |
class ImagePreprocessor():
|
| 54 |
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
|
| 55 |
self.transform_image = transforms.Compose([
|
|
|
|
| 57 |
transforms.ToTensor(),
|
| 58 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 59 |
])
|
|
|
|
| 60 |
def proc(self, image: Image.Image) -> torch.Tensor:
|
| 61 |
image = self.transform_image(image)
|
| 62 |
return image
|
| 63 |
|
|
|
|
| 64 |
usage_to_weights_file = {
|
| 65 |
'General': 'BiRefNet',
|
| 66 |
'General-HR': 'BiRefNet_HR',
|
|
|
|
| 75 |
'General-legacy': 'BiRefNet-legacy'
|
| 76 |
}
|
| 77 |
|
| 78 |
+
# ์ด๊ธฐ ๋ชจ๋ธ ๋ก๋ฉ (๊ธฐ๋ณธ: General)
|
| 79 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 80 |
+
'/'.join(('zhengpeng7', usage_to_weights_file['General'])),
|
| 81 |
+
trust_remote_code=True
|
| 82 |
+
)
|
| 83 |
birefnet.to(device)
|
| 84 |
birefnet.eval(); birefnet.half()
|
| 85 |
|
|
|
|
| 86 |
@spaces.GPU
|
| 87 |
def predict(images, resolution, weights_file):
|
| 88 |
+
assert images is not None, 'Images cannot be None.'
|
|
|
|
| 89 |
global birefnet
|
| 90 |
+
# ์ ํ๋ ๊ฐ์ค์น๋ก ๋ชจ๋ธ ์ฌ๋ก๋ฉ
|
| 91 |
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General']))
|
| 92 |
print('Using weights: {}.'.format(_weights_file))
|
| 93 |
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
|
|
|
|
| 95 |
birefnet.eval(); birefnet.half()
|
| 96 |
|
| 97 |
try:
|
| 98 |
+
resolution_list = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
|
| 99 |
except:
|
| 100 |
if weights_file == 'General-HR':
|
| 101 |
+
resolution_list = [2048, 2048]
|
| 102 |
elif weights_file == 'General-Lite-2K':
|
| 103 |
+
resolution_list = [2560, 1440]
|
| 104 |
else:
|
| 105 |
+
resolution_list = [1024, 1024]
|
| 106 |
+
print('Invalid resolution input. Automatically changed to default.')
|
| 107 |
|
| 108 |
+
# ์ด๋ฏธ์ง๊ฐ ๋จ์ผ ๊ฐ์ฒด์ธ์ง, ๋ฆฌ์คํธ(๋ฐฐ์น)์ธ์ง ํ์ธ
|
| 109 |
if isinstance(images, list):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
tab_is_batch = True
|
| 111 |
else:
|
| 112 |
images = [images]
|
| 113 |
tab_is_batch = False
|
| 114 |
|
| 115 |
+
save_paths = []
|
| 116 |
+
save_dir = 'preds-BiRefNet'
|
| 117 |
+
if tab_is_batch and not os.path.exists(save_dir):
|
| 118 |
+
os.makedirs(save_dir)
|
| 119 |
+
|
| 120 |
+
outputs = []
|
| 121 |
+
for idx, image_src in enumerate(images):
|
| 122 |
if isinstance(image_src, str):
|
| 123 |
if os.path.isfile(image_src):
|
| 124 |
image_ori = Image.open(image_src)
|
|
|
|
| 127 |
image_data = BytesIO(response.content)
|
| 128 |
image_ori = Image.open(image_data)
|
| 129 |
else:
|
| 130 |
+
if isinstance(image_src, np.ndarray):
|
| 131 |
+
image_ori = Image.fromarray(image_src)
|
| 132 |
+
else:
|
| 133 |
+
image_ori = image_src.convert('RGB')
|
| 134 |
image = image_ori.convert('RGB')
|
| 135 |
+
preprocessor = ImagePreprocessor(resolution=tuple(resolution_list))
|
| 136 |
+
image_proc = preprocessor.proc(image).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
with torch.no_grad():
|
| 138 |
preds = birefnet(image_proc.to(device).half())[-1].sigmoid().cpu()
|
| 139 |
pred = preds[0].squeeze()
|
|
|
|
|
|
|
| 140 |
pred_pil = transforms.ToPILImage()(pred)
|
| 141 |
image_masked = refine_foreground(image, pred_pil)
|
| 142 |
image_masked.putalpha(pred_pil.resize(image.size))
|
|
|
|
| 143 |
torch.cuda.empty_cache()
|
|
|
|
| 144 |
if tab_is_batch:
|
| 145 |
+
file_path = os.path.join(save_dir, "{}.png".format(
|
| 146 |
+
os.path.splitext(os.path.basename(image_src))[0] if isinstance(image_src, str) else f"img_{idx}"
|
| 147 |
+
))
|
| 148 |
+
image_masked.save(file_path)
|
| 149 |
+
save_paths.append(file_path)
|
| 150 |
+
outputs.append(image_masked)
|
| 151 |
+
else:
|
| 152 |
+
outputs = [image_masked, image_ori]
|
| 153 |
+
|
| 154 |
if tab_is_batch:
|
| 155 |
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir))
|
| 156 |
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
|
|
|
|
| 158 |
zipf.write(file, os.path.basename(file))
|
| 159 |
return save_paths, zip_file_path
|
| 160 |
else:
|
| 161 |
+
# ๋ฐํ๊ฐ์ ๋ฆฌ์คํธ ํํ๋ก ๋ง๋ค์ด ImageSlider์์ ํ์๋๋๋ก ํจ.
|
| 162 |
+
return outputs
|
| 163 |
+
|
| 164 |
+
# ์์ ๋ฐ์ดํฐ (์ด๋ฏธ์ง, URL, ๋ฐฐ์น)
|
| 165 |
+
examples_image = [[path, "1024x1024", "General"] for path in glob('examples/*')]
|
| 166 |
+
examples_text = [[url, "1024x1024", "General"] for url in ["https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"]]
|
| 167 |
+
examples_batch = [[file, "1024x1024", "General"] for file in glob('examples/*')]
|
| 168 |
+
|
| 169 |
+
descriptions = (
|
| 170 |
+
"Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n"
|
| 171 |
+
"The resolution used in our training was `1024x1024`, which is suggested for good results! "
|
| 172 |
+
"`2048x2048` is suggested for BiRefNet_HR.\n"
|
| 173 |
+
"Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n"
|
| 174 |
+
"We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
)
|
| 176 |
|
| 177 |
+
# ๊ฐ์ ๋ UI ์คํ์ผ (๋ฐฐ๊ฒฝ, ์ปจํ
์ด๋, ์ข์ธก ์ฌ์ด๋๋ฐ, ๋ฒํผ ์ ๋๋ฉ์ด์
๋ฑ)
|
| 178 |
+
css = """
|
| 179 |
+
body {
|
| 180 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
| 181 |
+
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
| 182 |
+
color: #333;
|
| 183 |
+
margin: 0;
|
| 184 |
+
padding: 0;
|
| 185 |
+
}
|
| 186 |
+
.gradio-container {
|
| 187 |
+
background: rgba(255, 255, 255, 0.95);
|
| 188 |
+
border-radius: 15px;
|
| 189 |
+
padding: 30px 40px;
|
| 190 |
+
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
|
| 191 |
+
margin: 40px auto;
|
| 192 |
+
max-width: 1200px;
|
| 193 |
+
}
|
| 194 |
+
.gradio-container h1 {
|
| 195 |
+
color: #333;
|
| 196 |
+
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
|
| 197 |
+
}
|
| 198 |
+
.fillable {
|
| 199 |
+
width: 95% !important;
|
| 200 |
+
max-width: unset !important;
|
| 201 |
+
}
|
| 202 |
+
#examples_container {
|
| 203 |
+
margin: auto;
|
| 204 |
+
width: 90%;
|
| 205 |
+
}
|
| 206 |
+
#examples_row {
|
| 207 |
+
justify-content: center;
|
| 208 |
+
}
|
| 209 |
+
.sidebar {
|
| 210 |
+
background: rgba(255, 255, 255, 0.98);
|
| 211 |
+
border-radius: 10px;
|
| 212 |
+
padding: 20px;
|
| 213 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
|
| 214 |
+
}
|
| 215 |
+
button, .btn {
|
| 216 |
+
background: linear-gradient(90deg, #ff8a00, #e52e71);
|
| 217 |
+
border: none;
|
| 218 |
+
color: #fff;
|
| 219 |
+
padding: 12px 24px;
|
| 220 |
+
text-transform: uppercase;
|
| 221 |
+
font-weight: bold;
|
| 222 |
+
letter-spacing: 1px;
|
| 223 |
+
border-radius: 5px;
|
| 224 |
+
cursor: pointer;
|
| 225 |
+
transition: transform 0.2s ease-in-out;
|
| 226 |
+
}
|
| 227 |
+
button:hover, .btn:hover {
|
| 228 |
+
transform: scale(1.05);
|
| 229 |
+
}
|
| 230 |
+
"""
|
| 231 |
+
|
| 232 |
+
title = """
|
| 233 |
+
<h1 align="center" style="margin-bottom: 0.2em;">BiRefNet Demo for Subject Extraction</h1>
|
| 234 |
+
<p align="center" style="font-size:1.1em; color:#555;">
|
| 235 |
+
Upload an image or provide an image URL to extract the subject with high-precision segmentation.
|
| 236 |
+
</p>
|
| 237 |
+
"""
|
| 238 |
+
|
| 239 |
+
with gr.Blocks(css=css, title="BiRefNet Demo") as demo:
|
| 240 |
+
gr.Markdown(title)
|
| 241 |
+
with gr.Tabs():
|
| 242 |
+
with gr.Tab("Image"):
|
| 243 |
+
with gr.Row():
|
| 244 |
+
with gr.Column(scale=1):
|
| 245 |
+
image_input = gr.Image(type='pil', label='Upload an Image')
|
| 246 |
+
resolution_input = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
|
| 247 |
+
weights_radio = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
|
| 248 |
+
predict_btn = gr.Button("Predict")
|
| 249 |
+
with gr.Column(scale=2):
|
| 250 |
+
output_slider = ImageSlider(label="BiRefNet's Prediction", type="pil")
|
| 251 |
+
gr.Examples(examples=examples_image, inputs=[image_input, resolution_input, weights_radio], label="Examples")
|
| 252 |
+
with gr.Tab("Text"):
|
| 253 |
+
with gr.Row():
|
| 254 |
+
with gr.Column(scale=1):
|
| 255 |
+
image_url = gr.Textbox(label="Paste an Image URL")
|
| 256 |
+
resolution_input_text = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
|
| 257 |
+
weights_radio_text = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
|
| 258 |
+
predict_btn_text = gr.Button("Predict")
|
| 259 |
+
with gr.Column(scale=2):
|
| 260 |
+
output_slider_text = ImageSlider(label="BiRefNet's Prediction", type="pil")
|
| 261 |
+
gr.Examples(examples=examples_text, inputs=[image_url, resolution_input_text, weights_radio_text], label="Examples")
|
| 262 |
+
with gr.Tab("Batch"):
|
| 263 |
+
with gr.Row():
|
| 264 |
+
with gr.Column(scale=1):
|
| 265 |
+
file_input = gr.File(label="Upload Multiple Images", type="filepath", file_count="multiple")
|
| 266 |
+
resolution_input_batch = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
|
| 267 |
+
weights_radio_batch = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
|
| 268 |
+
predict_btn_batch = gr.Button("Predict")
|
| 269 |
+
with gr.Column(scale=2):
|
| 270 |
+
output_gallery = gr.Gallery(label="BiRefNet's Predictions").style(grid=[3], height="auto")
|
| 271 |
+
zip_output = gr.File(label="Download Masked Images")
|
| 272 |
+
gr.Examples(examples=examples_batch, inputs=[file_input, resolution_input_batch, weights_radio_batch], label="Examples")
|
| 273 |
+
with gr.Row():
|
| 274 |
+
gr.Markdown("<p align='center'>Model by <a href='https://huggingface.co/ZhengPeng7/BiRefNet'>ZhengPeng7/BiRefNet</a></p>")
|
| 275 |
+
|
| 276 |
+
# ๊ฐ ํญ์ Predict ๋ฒํผ๊ณผ predict ํจ์ ์ฐ๊ฒฐ
|
| 277 |
+
predict_btn.click(
|
| 278 |
+
fn=predict,
|
| 279 |
+
inputs=[image_input, resolution_input, weights_radio],
|
| 280 |
+
outputs=output_slider
|
| 281 |
+
)
|
| 282 |
+
predict_btn_text.click(
|
| 283 |
+
fn=predict,
|
| 284 |
+
inputs=[image_url, resolution_input_text, weights_radio_text],
|
| 285 |
+
outputs=output_slider_text
|
| 286 |
+
)
|
| 287 |
+
predict_btn_batch.click(
|
| 288 |
+
fn=predict,
|
| 289 |
+
inputs=[file_input, resolution_input_batch, weights_radio_batch],
|
| 290 |
+
outputs=[output_gallery, zip_output]
|
| 291 |
+
)
|
| 292 |
|
| 293 |
if __name__ == "__main__":
|
| 294 |
+
demo.launch(share=False, debug=True)
|