Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| import json | |
| import os | |
| from PIL import Image | |
| from diffusers import FluxKontextPipeline | |
| from diffusers.utils import load_image | |
| from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, list_repo_files | |
| from safetensors.torch import load_file | |
| import requests | |
| import re | |
| # Load Kontext model | |
| MAX_SEED = np.iinfo(np.int32).max | |
| pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") | |
| # Load LoRA data | |
| flux_loras_raw = [ | |
| { | |
| "image": "examples/1.png", | |
| "title": "Studio Ghibli", | |
| "repo": "openfree/flux-chatgpt-ghibli-lora", | |
| "trigger_word": "ghibli", | |
| "weights": "pytorch_lora_weights.safetensors", | |
| "likes": 0 | |
| }, | |
| { | |
| "image": "examples/2.png", | |
| "title": "Winslow Homer", | |
| "repo": "openfree/winslow-homer", | |
| "trigger_word": "homer", | |
| "weights": "pytorch_lora_weights.safetensors", | |
| "likes": 0 | |
| }, | |
| { | |
| "image": "examples/3.png", | |
| "title": "Van Gogh", | |
| "repo": "openfree/van-gogh", | |
| "trigger_word": "gogh", | |
| "weights": "pytorch_lora_weights.safetensors", | |
| "likes": 0 | |
| }, | |
| { | |
| "image": "examples/4.png", | |
| "title": "Paul CΓ©zanne", | |
| "repo": "openfree/paul-cezanne", | |
| "trigger_word": "Cezanne", | |
| "weights": "pytorch_lora_weights.safetensors", | |
| "likes": 0 | |
| }, | |
| { | |
| "image": "examples/5.png", | |
| "title": "Renoir", | |
| "repo": "openfree/pierre-auguste-renoir", | |
| "trigger_word": "Renoir", | |
| "weights": "pytorch_lora_weights.safetensors", | |
| "likes": 0 | |
| }, | |
| { | |
| "image": "examples/6.png", | |
| "title": "Claude Monet", | |
| "repo": "openfree/claude-monet", | |
| "trigger_word": "claude monet", | |
| "weights": "pytorch_lora_weights.safetensors", | |
| "likes": 0 | |
| }, | |
| { | |
| "image": "examples/7.png", | |
| "title": "Fantasy Art", | |
| "repo": "openfree/myt-flux-fantasy", | |
| "trigger_word": "fantasy", | |
| "weights": "pytorch_lora_weights.safetensors", | |
| "likes": 0 | |
| } | |
| ] | |
| print(f"Loaded {len(flux_loras_raw)} LoRAs") | |
| # Global variables for LoRA management | |
| current_lora = None | |
| lora_cache = {} | |
| def load_lora_weights(repo_id, weights_filename): | |
| """Load LoRA weights from HuggingFace""" | |
| try: | |
| # First try with the specified filename | |
| try: | |
| lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename) | |
| if repo_id not in lora_cache: | |
| lora_cache[repo_id] = lora_path | |
| return lora_path | |
| except Exception as e: | |
| print(f"Failed to load {weights_filename}, trying to find alternative LoRA files...") | |
| # If the specified file doesn't exist, try to find any .safetensors file | |
| from huggingface_hub import list_repo_files | |
| try: | |
| files = list_repo_files(repo_id) | |
| safetensors_files = [f for f in files if f.endswith(('.safetensors', '.bin')) and 'lora' in f.lower()] | |
| if not safetensors_files: | |
| # Try without 'lora' in filename | |
| safetensors_files = [f for f in files if f.endswith('.safetensors')] | |
| if safetensors_files: | |
| # Try the first available file | |
| for file in safetensors_files: | |
| try: | |
| print(f"Trying alternative file: {file}") | |
| lora_path = hf_hub_download(repo_id=repo_id, filename=file) | |
| if repo_id not in lora_cache: | |
| lora_cache[repo_id] = lora_path | |
| print(f"Successfully loaded alternative LoRA file: {file}") | |
| return lora_path | |
| except: | |
| continue | |
| print(f"No suitable LoRA files found in {repo_id}") | |
| return None | |
| except Exception as list_error: | |
| print(f"Error listing files in repo {repo_id}: {list_error}") | |
| return None | |
| except Exception as e: | |
| print(f"Error loading LoRA from {repo_id}: {e}") | |
| return None | |
| def update_selection(selected_state: gr.SelectData, flux_loras): | |
| """Update UI when a LoRA is selected""" | |
| if selected_state.index >= len(flux_loras): | |
| return "### No LoRA selected", gr.update(), None | |
| lora = flux_loras[selected_state.index] | |
| lora_title = lora["title"] | |
| lora_repo = lora["repo"] | |
| trigger_word = lora["trigger_word"] | |
| # Create a more informative selected text | |
| updated_text = f"### π¨ Selected Style: {lora_title}" | |
| new_placeholder = f"Describe additional details, e.g., 'wearing a red hat' or 'smiling'" | |
| return updated_text, gr.update(placeholder=new_placeholder), selected_state.index | |
| def get_huggingface_lora(link): | |
| """Download LoRA from HuggingFace link""" | |
| split_link = link.split("/") | |
| if len(split_link) == 2: | |
| try: | |
| model_card = ModelCard.load(link) | |
| trigger_word = model_card.data.get("instance_prompt", "") | |
| # Try to find the correct safetensors file | |
| files = list_repo_files(link) | |
| safetensors_files = [f for f in files if f.endswith('.safetensors')] | |
| # Prioritize files with 'lora' in the name | |
| lora_files = [f for f in safetensors_files if 'lora' in f.lower()] | |
| if lora_files: | |
| safetensors_file = lora_files[0] | |
| elif safetensors_files: | |
| safetensors_file = safetensors_files[0] | |
| else: | |
| # Try .bin files as fallback | |
| bin_files = [f for f in files if f.endswith('.bin') and 'lora' in f.lower()] | |
| if bin_files: | |
| safetensors_file = bin_files[0] | |
| else: | |
| safetensors_file = "pytorch_lora_weights.safetensors" # Default fallback | |
| print(f"Found LoRA file: {safetensors_file} in {link}") | |
| return split_link[1], safetensors_file, trigger_word | |
| except Exception as e: | |
| print(f"Error in get_huggingface_lora: {e}") | |
| # Try basic detection | |
| try: | |
| files = list_repo_files(link) | |
| safetensors_file = next((f for f in files if f.endswith('.safetensors')), "pytorch_lora_weights.safetensors") | |
| return split_link[1], safetensors_file, "" | |
| except: | |
| raise Exception(f"Error loading LoRA: {e}") | |
| else: | |
| raise Exception("Invalid HuggingFace repository format") | |
| def load_custom_lora(link): | |
| """Load custom LoRA from user input""" | |
| if not link: | |
| return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### π¨ Select an art style from the gallery", None | |
| try: | |
| repo_name, weights_file, trigger_word = get_huggingface_lora(link) | |
| card = f''' | |
| <div class="custom_lora_card"> | |
| <div style="display: flex; align-items: center; margin-bottom: 12px;"> | |
| <span style="font-size: 18px; margin-right: 8px;">β </span> | |
| <strong style="font-size: 16px;">Custom LoRA Loaded!</strong> | |
| </div> | |
| <div style="background: rgba(255, 255, 255, 0.8); padding: 12px; border-radius: 8px;"> | |
| <h4 style="margin: 0 0 8px 0; color: #333;">{repo_name}</h4> | |
| <small style="color: #666;">{"Trigger: <code style='background: #f0f0f0; padding: 2px 6px; border-radius: 4px;'><b>"+trigger_word+"</b></code>" if trigger_word else "No trigger word found"}</small> | |
| </div> | |
| </div> | |
| ''' | |
| custom_lora_data = { | |
| "repo": link, | |
| "weights": weights_file, | |
| "trigger_word": trigger_word | |
| } | |
| return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"π¨ Custom Style: {repo_name}", None | |
| except Exception as e: | |
| return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### π¨ Select an art style from the gallery", None | |
| def remove_custom_lora(): | |
| """Remove custom LoRA""" | |
| return "", gr.update(visible=False), gr.update(visible=False), None, None | |
| def classify_gallery(flux_loras): | |
| """Sort gallery by likes""" | |
| try: | |
| sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True) | |
| gallery_items = [] | |
| for item in sorted_gallery: | |
| if "image" in item and "title" in item: | |
| image_path = item["image"] | |
| title = item["title"] | |
| # Simply use the path as-is for Gradio to handle | |
| gallery_items.append((image_path, title)) | |
| print(f"Added to gallery: {image_path} - {title}") | |
| print(f"Total gallery items: {len(gallery_items)}") | |
| return gallery_items, sorted_gallery | |
| except Exception as e: | |
| print(f"Error in classify_gallery: {e}") | |
| import traceback | |
| traceback.print_exc() | |
| return [], [] | |
| def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)): | |
| """Wrapper function to handle state serialization""" | |
| return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress) | |
| def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)): | |
| """Generate image with selected LoRA""" | |
| global current_lora, pipe | |
| # Check if input image is provided | |
| if input_image is None: | |
| gr.Warning("Please upload your portrait photo first! πΈ") | |
| return None, seed, gr.update(visible=False) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Determine which LoRA to use | |
| lora_to_use = None | |
| if custom_lora: | |
| lora_to_use = custom_lora | |
| elif selected_index is not None and flux_loras and selected_index < len(flux_loras): | |
| lora_to_use = flux_loras[selected_index] | |
| # Load LoRA if needed | |
| if lora_to_use and lora_to_use != current_lora: | |
| try: | |
| # Unload current LoRA | |
| if current_lora: | |
| pipe.unload_lora_weights() | |
| print(f"Unloaded previous LoRA") | |
| # Load new LoRA | |
| repo_id = lora_to_use.get("repo", "unknown") | |
| weights_file = lora_to_use.get("weights", "pytorch_lora_weights.safetensors") | |
| print(f"Loading LoRA: {repo_id} with weights: {weights_file}") | |
| lora_path = load_lora_weights(repo_id, weights_file) | |
| if lora_path: | |
| pipe.load_lora_weights(lora_path, adapter_name="selected_lora") | |
| pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale]) | |
| print(f"Successfully loaded: {lora_path} with scale {lora_scale}") | |
| current_lora = lora_to_use | |
| else: | |
| print(f"Failed to load LoRA from {repo_id}") | |
| gr.Warning(f"Failed to load {lora_to_use.get('title', 'style')}. Please try a different art style.") | |
| return None, seed, gr.update(visible=False) | |
| except Exception as e: | |
| print(f"Error loading LoRA: {e}") | |
| # Continue without LoRA | |
| else: | |
| if lora_to_use: | |
| print(f"Using already loaded LoRA: {lora_to_use.get('repo', 'unknown')}") | |
| try: | |
| # Convert image to RGB | |
| input_image = input_image.convert("RGB") | |
| except Exception as e: | |
| print(f"Error processing image: {e}") | |
| gr.Warning("Error processing the uploaded image. Please try a different photo. πΈ") | |
| return None, seed, gr.update(visible=False) | |
| # Check if LoRA is selected | |
| if lora_to_use is None: | |
| gr.Warning("Please select an art style from the gallery first! π¨") | |
| return None, seed, gr.update(visible=False) | |
| # Add trigger word to prompt | |
| trigger_word = lora_to_use.get("trigger_word", "") | |
| # Special handling for different art styles | |
| if trigger_word == "ghibli": | |
| prompt = f"Create a Studio Ghibli anime style portrait of the person in the photo, {prompt}. Maintain the facial identity while transforming into whimsical anime art style." | |
| elif trigger_word == "homer": | |
| prompt = f"Paint the person in Winslow Homer's American realist style, {prompt}. Keep facial features while applying watercolor and marine art techniques." | |
| elif trigger_word == "gogh": | |
| prompt = f"Transform the portrait into Van Gogh's post-impressionist style with swirling brushstrokes, {prompt}. Maintain facial identity with expressive colors." | |
| elif trigger_word == "Cezanne": | |
| prompt = f"Render the person in Paul CΓ©zanne's geometric post-impressionist style, {prompt}. Keep facial structure while applying structured brushwork." | |
| elif trigger_word == "Renoir": | |
| prompt = f"Paint the portrait in Pierre-Auguste Renoir's impressionist style with soft light, {prompt}. Maintain identity with luminous skin tones." | |
| elif trigger_word == "claude monet": | |
| prompt = f"Create an impressionist portrait in Claude Monet's style with visible brushstrokes, {prompt}. Keep facial features while using light and color." | |
| elif trigger_word == "fantasy": | |
| prompt = f"Transform into an epic fantasy character portrait, {prompt}. Maintain facial identity while adding magical and fantastical elements." | |
| elif trigger_word == ", How2Draw": | |
| prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features" | |
| elif trigger_word == ", video game screenshot in the style of THSMS": | |
| prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features" | |
| else: | |
| prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}." | |
| try: | |
| image = pipe( | |
| image=input_image, | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| generator=torch.Generator().manual_seed(seed), | |
| ).images[0] | |
| return image, seed, gr.update(visible=True) | |
| except Exception as e: | |
| print(f"Error during inference: {e}") | |
| return None, seed, gr.update(visible=False) | |
| # CSS styling with beautiful gradient pastel design | |
| css = """ | |
| /* Global background and container styling */ | |
| .gradio-container { | |
| background: linear-gradient(135deg, #ffeef8 0%, #e6f3ff 25%, #fff4e6 50%, #f0e6ff 75%, #e6fff9 100%); | |
| font-family: 'Inter', sans-serif; | |
| } | |
| /* Main app container */ | |
| #main_app { | |
| display: flex; | |
| gap: 24px; | |
| padding: 20px; | |
| background: rgba(255, 255, 255, 0.85); | |
| backdrop-filter: blur(20px); | |
| border-radius: 24px; | |
| box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08); | |
| } | |
| /* Box column styling */ | |
| #box_column { | |
| min-width: 400px; | |
| } | |
| /* Gallery box with glassmorphism */ | |
| #gallery_box { | |
| background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(240, 248, 255, 0.9) 100%); | |
| border-radius: 20px; | |
| padding: 20px; | |
| box-shadow: 0 8px 32px rgba(135, 206, 250, 0.2); | |
| border: 1px solid rgba(255, 255, 255, 0.8); | |
| } | |
| /* Input image styling */ | |
| .image-container { | |
| border-radius: 16px; | |
| overflow: hidden; | |
| box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1); | |
| } | |
| /* Gallery styling */ | |
| #gallery { | |
| overflow-y: scroll !important; | |
| max-height: 400px; | |
| padding: 12px; | |
| background: rgba(255, 255, 255, 0.5); | |
| border-radius: 16px; | |
| scrollbar-width: thin; | |
| scrollbar-color: #ddd6fe #f5f3ff; | |
| } | |
| #gallery::-webkit-scrollbar { | |
| width: 8px; | |
| } | |
| #gallery::-webkit-scrollbar-track { | |
| background: #f5f3ff; | |
| border-radius: 10px; | |
| } | |
| #gallery::-webkit-scrollbar-thumb { | |
| background: linear-gradient(180deg, #c7d2fe 0%, #ddd6fe 100%); | |
| border-radius: 10px; | |
| } | |
| /* Selected LoRA text */ | |
| #selected_lora { | |
| background: linear-gradient(135deg, #818cf8 0%, #a78bfa 100%); | |
| -webkit-background-clip: text; | |
| -webkit-text-fill-color: transparent; | |
| background-clip: text; | |
| font-weight: 700; | |
| font-size: 18px; | |
| text-align: center; | |
| padding: 12px; | |
| margin-bottom: 16px; | |
| } | |
| /* Prompt input field */ | |
| #prompt { | |
| flex-grow: 1; | |
| border: 2px solid transparent; | |
| background: linear-gradient(white, white) padding-box, | |
| linear-gradient(135deg, #a5b4fc 0%, #e9d5ff 100%) border-box; | |
| border-radius: 12px; | |
| padding: 12px 16px; | |
| font-size: 16px; | |
| transition: all 0.3s ease; | |
| } | |
| #prompt:focus { | |
| box-shadow: 0 0 0 4px rgba(165, 180, 252, 0.25); | |
| } | |
| /* Run button with animated gradient */ | |
| #run_button { | |
| background: linear-gradient(135deg, #a78bfa 0%, #818cf8 25%, #60a5fa 50%, #34d399 75%, #fbbf24 100%); | |
| background-size: 200% 200%; | |
| animation: gradient-shift 3s ease infinite; | |
| color: white; | |
| border: none; | |
| padding: 12px 32px; | |
| border-radius: 12px; | |
| font-weight: 600; | |
| font-size: 16px; | |
| cursor: pointer; | |
| transition: all 0.3s ease; | |
| box-shadow: 0 4px 20px rgba(167, 139, 250, 0.4); | |
| } | |
| #run_button:hover { | |
| transform: translateY(-2px); | |
| box-shadow: 0 6px 30px rgba(167, 139, 250, 0.6); | |
| } | |
| @keyframes gradient-shift { | |
| 0% { background-position: 0% 50%; } | |
| 50% { background-position: 100% 50%; } | |
| 100% { background-position: 0% 50%; } | |
| } | |
| /* Custom LoRA card */ | |
| .custom_lora_card { | |
| background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%); | |
| border: 1px solid #fcd34d; | |
| border-radius: 12px; | |
| padding: 16px; | |
| margin: 12px 0; | |
| box-shadow: 0 4px 12px rgba(251, 191, 36, 0.2); | |
| } | |
| /* Result image container */ | |
| .output-image { | |
| border-radius: 16px; | |
| overflow: hidden; | |
| box-shadow: 0 8px 32px rgba(0, 0, 0, 0.12); | |
| margin-top: 20px; | |
| } | |
| /* Accordion styling */ | |
| .accordion { | |
| background: rgba(249, 250, 251, 0.9); | |
| border-radius: 12px; | |
| border: 1px solid rgba(229, 231, 235, 0.8); | |
| margin-top: 16px; | |
| } | |
| /* Slider styling */ | |
| .slider-container { | |
| padding: 8px 0; | |
| } | |
| input[type="range"] { | |
| background: linear-gradient(to right, #e0e7ff 0%, #c7d2fe 100%); | |
| border-radius: 8px; | |
| height: 6px; | |
| } | |
| /* Reuse button */ | |
| button:not(#run_button) { | |
| background: linear-gradient(135deg, #f0abfc 0%, #c084fc 100%); | |
| color: white; | |
| border: none; | |
| padding: 8px 20px; | |
| border-radius: 8px; | |
| font-weight: 500; | |
| cursor: pointer; | |
| transition: all 0.3s ease; | |
| } | |
| button:not(#run_button):hover { | |
| transform: translateY(-1px); | |
| box-shadow: 0 4px 16px rgba(192, 132, 252, 0.4); | |
| } | |
| /* Title styling */ | |
| h1 { | |
| background: linear-gradient(135deg, #6366f1 0%, #a855f7 25%, #ec4899 50%, #f43f5e 75%, #f59e0b 100%); | |
| -webkit-background-clip: text; | |
| -webkit-text-fill-color: transparent; | |
| background-clip: text; | |
| text-align: center; | |
| font-size: 3.5rem; | |
| font-weight: 800; | |
| margin-bottom: 8px; | |
| text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1); | |
| } | |
| h1 small { | |
| display: block; | |
| background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%); | |
| -webkit-background-clip: text; | |
| -webkit-text-fill-color: transparent; | |
| background-clip: text; | |
| font-size: 1rem; | |
| font-weight: 500; | |
| margin-top: 8px; | |
| } | |
| /* Checkbox styling */ | |
| input[type="checkbox"] { | |
| accent-color: #8b5cf6; | |
| } | |
| /* Label styling */ | |
| label { | |
| color: #4b5563; | |
| font-weight: 500; | |
| } | |
| /* Group containers */ | |
| .gr-group { | |
| background: rgba(255, 255, 255, 0.7); | |
| border-radius: 16px; | |
| padding: 20px; | |
| border: 1px solid rgba(255, 255, 255, 0.9); | |
| box-shadow: 0 4px 16px rgba(0, 0, 0, 0.05); | |
| } | |
| """ | |
| # Create Gradio interface | |
| with gr.Blocks(css=css) as demo: | |
| gr_flux_loras = gr.State(value=flux_loras_raw) | |
| title = gr.HTML( | |
| """<h1>β¨ Flux-Kontext FaceLORA | |
| <small>Transform your portraits with AI-powered style transfer π¨</small></h1>""", | |
| ) | |
| selected_state = gr.State(value=None) | |
| custom_loaded_lora = gr.State(value=None) | |
| with gr.Row(elem_id="main_app"): | |
| with gr.Column(scale=4, elem_id="box_column"): | |
| with gr.Group(elem_id="gallery_box"): | |
| input_image = gr.Image(label="Upload your portrait photo πΈ", type="pil", height=300) | |
| gallery = gr.Gallery( | |
| label="Choose Your Art Style", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery", | |
| show_share_button=False, | |
| height=400 | |
| ) | |
| custom_model = gr.Textbox( | |
| label="π Or use a custom LoRA from HuggingFace", | |
| placeholder="e.g., username/lora-name", | |
| visible=True | |
| ) | |
| custom_model_card = gr.HTML(visible=False) | |
| custom_model_button = gr.Button("β Remove custom LoRA", visible=False) | |
| with gr.Column(scale=5): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label="Additional Details (optional)", | |
| show_label=False, | |
| lines=1, | |
| max_lines=1, | |
| placeholder="Describe additional details, e.g., 'wearing a red hat' or 'smiling'", | |
| elem_id="prompt" | |
| ) | |
| run_button = gr.Button("Generate β¨", elem_id="run_button") | |
| result = gr.Image(label="Your Artistic Portrait", interactive=False) | |
| reuse_button = gr.Button("π Reuse this image", visible=False) | |
| with gr.Accordion("βοΈ Advanced Settings", open=False): | |
| lora_scale = gr.Slider( | |
| label="Style Strength", | |
| minimum=0, | |
| maximum=2, | |
| step=0.1, | |
| value=1.0, | |
| info="How strongly to apply the art style (1.0 = balanced)" | |
| ) | |
| seed = gr.Slider( | |
| label="Random Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| info="Set to 0 for random results" | |
| ) | |
| randomize_seed = gr.Checkbox(label="π² Randomize seed for each generation", value=True) | |
| guidance_scale = gr.Slider( | |
| label="Image Guidance", | |
| minimum=1, | |
| maximum=10, | |
| step=0.1, | |
| value=2.5, | |
| info="How closely to follow the input image (lower = more creative)" | |
| ) | |
| prompt_title = gr.Markdown( | |
| value="### π¨ Select an art style from the gallery", | |
| visible=True, | |
| elem_id="selected_lora", | |
| ) | |
| # Event handlers | |
| custom_model.input( | |
| fn=load_custom_lora, | |
| inputs=[custom_model], | |
| outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state], | |
| ) | |
| custom_model_button.click( | |
| fn=remove_custom_lora, | |
| outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state] | |
| ) | |
| gallery.select( | |
| fn=update_selection, | |
| inputs=[gr_flux_loras], | |
| outputs=[prompt_title, prompt, selected_state], | |
| show_progress=False | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer_with_lora_wrapper, | |
| inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras], | |
| outputs=[result, seed, reuse_button] | |
| ) | |
| reuse_button.click( | |
| fn=lambda image: image, | |
| inputs=[result], | |
| outputs=[input_image] | |
| ) | |
| # Initialize gallery | |
| demo.load( | |
| fn=classify_gallery, | |
| inputs=[gr_flux_loras], | |
| outputs=[gallery, gr_flux_loras] | |
| ) | |
| demo.queue(default_concurrency_limit=None) | |
| demo.launch() |