Update app.py
Browse files
app.py
CHANGED
|
@@ -2,12 +2,15 @@ import spaces
|
|
| 2 |
import logging
|
| 3 |
from datetime import datetime
|
| 4 |
from pathlib import Path
|
| 5 |
-
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
| 8 |
import torchaudio
|
| 9 |
import os
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
| 11 |
try:
|
| 12 |
import mmaudio
|
| 13 |
except ImportError:
|
|
@@ -20,22 +23,80 @@ from mmaudio.model.flow_matching import FlowMatching
|
|
| 20 |
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
| 21 |
from mmaudio.model.sequence_config import SequenceConfig
|
| 22 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 23 |
-
import tempfile
|
| 24 |
|
|
|
|
| 25 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 26 |
torch.backends.cudnn.allow_tf32 = True
|
| 27 |
|
|
|
|
| 28 |
log = logging.getLogger()
|
| 29 |
|
|
|
|
| 30 |
device = 'cuda'
|
| 31 |
dtype = torch.bfloat16
|
| 32 |
|
|
|
|
| 33 |
model: ModelConfig = all_model_cfg['large_44k_v2']
|
| 34 |
model.download_if_needed()
|
| 35 |
output_dir = Path('./output/gradio')
|
| 36 |
|
| 37 |
setup_eval_logging()
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
| 41 |
seq_cfg = model.seq_cfg
|
|
@@ -54,14 +115,25 @@ def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
|
| 54 |
|
| 55 |
return net, feature_utils, seq_cfg
|
| 56 |
|
| 57 |
-
|
| 58 |
net, feature_utils, seq_cfg = get_model()
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
@spaces.GPU
|
| 62 |
@torch.inference_mode()
|
| 63 |
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
| 64 |
cfg_strength: float, duration: float):
|
|
|
|
|
|
|
| 65 |
|
| 66 |
rng = torch.Generator(device=device)
|
| 67 |
rng.manual_seed(seed)
|
|
@@ -83,23 +155,20 @@ def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int
|
|
| 83 |
cfg_strength=cfg_strength)
|
| 84 |
audio = audios.float().cpu()[0]
|
| 85 |
|
| 86 |
-
# current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 87 |
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
| 88 |
-
# output_dir.mkdir(exist_ok=True, parents=True)
|
| 89 |
-
# video_save_path = output_dir / f'{current_time_string}.mp4'
|
| 90 |
make_video(video,
|
| 91 |
video_save_path,
|
| 92 |
audio,
|
| 93 |
sampling_rate=seq_cfg.sampling_rate,
|
| 94 |
duration_sec=seq_cfg.duration)
|
| 95 |
-
log.info(f'Saved video to {video_save_path}')
|
| 96 |
return video_save_path
|
| 97 |
|
| 98 |
-
|
| 99 |
@spaces.GPU
|
| 100 |
@torch.inference_mode()
|
| 101 |
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
|
| 102 |
duration: float):
|
|
|
|
|
|
|
| 103 |
|
| 104 |
rng = torch.Generator(device=device)
|
| 105 |
rng.manual_seed(seed)
|
|
@@ -121,141 +190,49 @@ def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
|
| 121 |
|
| 122 |
audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name
|
| 123 |
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
|
| 124 |
-
log.info(f'Saved audio to {audio_save_path}')
|
| 125 |
return audio_save_path
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
video_to_audio_tab = gr.Interface(
|
| 129 |
fn=video_to_audio,
|
| 130 |
inputs=[
|
| 131 |
-
gr.Video(),
|
| 132 |
-
gr.
|
| 133 |
-
gr.
|
| 134 |
-
gr.Number(label=
|
| 135 |
-
gr.Number(label=
|
| 136 |
-
gr.Number(label=
|
| 137 |
-
gr.Number(label=
|
| 138 |
],
|
| 139 |
-
outputs=
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
examples=[
|
| 143 |
-
[
|
| 144 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_beach.mp4',
|
| 145 |
-
'waves, seagulls',
|
| 146 |
-
'',
|
| 147 |
-
0,
|
| 148 |
-
25,
|
| 149 |
-
4.5,
|
| 150 |
-
10,
|
| 151 |
-
],
|
| 152 |
-
[
|
| 153 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_serpent.mp4',
|
| 154 |
-
'',
|
| 155 |
-
'music',
|
| 156 |
-
0,
|
| 157 |
-
25,
|
| 158 |
-
4.5,
|
| 159 |
-
10,
|
| 160 |
-
],
|
| 161 |
-
[
|
| 162 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_seahorse.mp4',
|
| 163 |
-
'bubbles',
|
| 164 |
-
'',
|
| 165 |
-
0,
|
| 166 |
-
25,
|
| 167 |
-
4.5,
|
| 168 |
-
10,
|
| 169 |
-
],
|
| 170 |
-
[
|
| 171 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_india.mp4',
|
| 172 |
-
'Indian holy music',
|
| 173 |
-
'',
|
| 174 |
-
0,
|
| 175 |
-
25,
|
| 176 |
-
4.5,
|
| 177 |
-
10,
|
| 178 |
-
],
|
| 179 |
-
[
|
| 180 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_galloping.mp4',
|
| 181 |
-
'galloping',
|
| 182 |
-
'',
|
| 183 |
-
0,
|
| 184 |
-
25,
|
| 185 |
-
4.5,
|
| 186 |
-
10,
|
| 187 |
-
],
|
| 188 |
-
[
|
| 189 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_kraken.mp4',
|
| 190 |
-
'waves, storm',
|
| 191 |
-
'',
|
| 192 |
-
0,
|
| 193 |
-
25,
|
| 194 |
-
4.5,
|
| 195 |
-
10,
|
| 196 |
-
],
|
| 197 |
-
[
|
| 198 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/sora_nyc.mp4',
|
| 199 |
-
'',
|
| 200 |
-
'',
|
| 201 |
-
0,
|
| 202 |
-
25,
|
| 203 |
-
4.5,
|
| 204 |
-
10,
|
| 205 |
-
],
|
| 206 |
-
[
|
| 207 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/mochi_storm.mp4',
|
| 208 |
-
'storm',
|
| 209 |
-
'',
|
| 210 |
-
0,
|
| 211 |
-
25,
|
| 212 |
-
4.5,
|
| 213 |
-
10,
|
| 214 |
-
],
|
| 215 |
-
[
|
| 216 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/hunyuan_spring.mp4',
|
| 217 |
-
'',
|
| 218 |
-
'',
|
| 219 |
-
0,
|
| 220 |
-
25,
|
| 221 |
-
4.5,
|
| 222 |
-
10,
|
| 223 |
-
],
|
| 224 |
-
[
|
| 225 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/hunyuan_typing.mp4',
|
| 226 |
-
'typing',
|
| 227 |
-
'',
|
| 228 |
-
0,
|
| 229 |
-
25,
|
| 230 |
-
4.5,
|
| 231 |
-
10,
|
| 232 |
-
],
|
| 233 |
-
[
|
| 234 |
-
'https://huggingface.co/hkchengrex/MMAudio/resolve/main/examples/hunyuan_wake_up.mp4',
|
| 235 |
-
'',
|
| 236 |
-
'',
|
| 237 |
-
0,
|
| 238 |
-
25,
|
| 239 |
-
4.5,
|
| 240 |
-
10,
|
| 241 |
-
],
|
| 242 |
-
])
|
| 243 |
|
| 244 |
text_to_audio_tab = gr.Interface(
|
| 245 |
fn=text_to_audio,
|
| 246 |
inputs=[
|
| 247 |
-
gr.
|
| 248 |
-
gr.
|
| 249 |
-
gr.Number(label=
|
| 250 |
-
gr.Number(label=
|
| 251 |
-
gr.Number(label=
|
| 252 |
-
gr.Number(label=
|
| 253 |
],
|
| 254 |
-
outputs=
|
| 255 |
-
|
| 256 |
-
title='MMAudio β Text-to-Audio Synthesis',
|
| 257 |
)
|
| 258 |
|
|
|
|
| 259 |
if __name__ == "__main__":
|
| 260 |
-
gr.TabbedInterface(
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import logging
|
| 3 |
from datetime import datetime
|
| 4 |
from pathlib import Path
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import torch
|
| 7 |
import torchaudio
|
| 8 |
import os
|
| 9 |
+
from transformers import pipeline
|
| 10 |
+
from pixabay import Image, Video
|
| 11 |
+
import tempfile
|
| 12 |
|
| 13 |
+
# κΈ°λ³Έ μ€μ
|
| 14 |
try:
|
| 15 |
import mmaudio
|
| 16 |
except ImportError:
|
|
|
|
| 23 |
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
| 24 |
from mmaudio.model.sequence_config import SequenceConfig
|
| 25 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
|
|
|
| 26 |
|
| 27 |
+
# CUDA μ€μ
|
| 28 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 29 |
torch.backends.cudnn.allow_tf32 = True
|
| 30 |
|
| 31 |
+
# λ‘κΉ
μ€μ
|
| 32 |
log = logging.getLogger()
|
| 33 |
|
| 34 |
+
# μ₯μΉ λ° λ°μ΄ν° νμ
μ€μ
|
| 35 |
device = 'cuda'
|
| 36 |
dtype = torch.bfloat16
|
| 37 |
|
| 38 |
+
# λͺ¨λΈ μ€μ
|
| 39 |
model: ModelConfig = all_model_cfg['large_44k_v2']
|
| 40 |
model.download_if_needed()
|
| 41 |
output_dir = Path('./output/gradio')
|
| 42 |
|
| 43 |
setup_eval_logging()
|
| 44 |
|
| 45 |
+
# λ²μκΈ° λ° Pixabay API μ€μ
|
| 46 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 47 |
+
PIXABAY_API_KEY = "33492762-a28a596ec4f286f84cd328b17"
|
| 48 |
+
pixabay_video = Video(PIXABAY_API_KEY)
|
| 49 |
+
|
| 50 |
+
# CSS μ€νμΌ μ μ
|
| 51 |
+
custom_css = """
|
| 52 |
+
.gradio-container {
|
| 53 |
+
background: linear-gradient(45deg, #1a1a1a, #2a2a2a);
|
| 54 |
+
border-radius: 15px;
|
| 55 |
+
box-shadow: 0 8px 32px rgba(0,0,0,0.3);
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
.input-container, .output-container {
|
| 59 |
+
background: rgba(255,255,255,0.1);
|
| 60 |
+
backdrop-filter: blur(10px);
|
| 61 |
+
border-radius: 10px;
|
| 62 |
+
padding: 20px;
|
| 63 |
+
transform-style: preserve-3d;
|
| 64 |
+
transition: transform 0.3s ease;
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
.input-container:hover {
|
| 68 |
+
transform: translateZ(20px);
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
.gallery-item {
|
| 72 |
+
transition: transform 0.3s ease;
|
| 73 |
+
border-radius: 8px;
|
| 74 |
+
overflow: hidden;
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
.gallery-item:hover {
|
| 78 |
+
transform: scale(1.05);
|
| 79 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.2);
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
.tabs {
|
| 83 |
+
background: rgba(255,255,255,0.05);
|
| 84 |
+
border-radius: 10px;
|
| 85 |
+
padding: 10px;
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
button {
|
| 89 |
+
background: linear-gradient(45deg, #4a90e2, #357abd);
|
| 90 |
+
border: none;
|
| 91 |
+
border-radius: 5px;
|
| 92 |
+
transition: all 0.3s ease;
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
button:hover {
|
| 96 |
+
transform: translateY(-2px);
|
| 97 |
+
box-shadow: 0 4px 15px rgba(74,144,226,0.3);
|
| 98 |
+
}
|
| 99 |
+
"""
|
| 100 |
|
| 101 |
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
| 102 |
seq_cfg = model.seq_cfg
|
|
|
|
| 115 |
|
| 116 |
return net, feature_utils, seq_cfg
|
| 117 |
|
|
|
|
| 118 |
net, feature_utils, seq_cfg = get_model()
|
| 119 |
|
| 120 |
+
def translate_prompt(text):
|
| 121 |
+
if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text):
|
| 122 |
+
translation = translator(text)[0]['translation_text']
|
| 123 |
+
return translation
|
| 124 |
+
return text
|
| 125 |
+
|
| 126 |
+
def search_videos(query):
|
| 127 |
+
query = translate_prompt(query)
|
| 128 |
+
videos = pixabay_video.search(q=query, per_page=80)
|
| 129 |
+
return [video.video_large for video in videos['hits']]
|
| 130 |
|
| 131 |
@spaces.GPU
|
| 132 |
@torch.inference_mode()
|
| 133 |
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
| 134 |
cfg_strength: float, duration: float):
|
| 135 |
+
prompt = translate_prompt(prompt)
|
| 136 |
+
negative_prompt = translate_prompt(negative_prompt)
|
| 137 |
|
| 138 |
rng = torch.Generator(device=device)
|
| 139 |
rng.manual_seed(seed)
|
|
|
|
| 155 |
cfg_strength=cfg_strength)
|
| 156 |
audio = audios.float().cpu()[0]
|
| 157 |
|
|
|
|
| 158 |
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
|
|
|
|
|
|
| 159 |
make_video(video,
|
| 160 |
video_save_path,
|
| 161 |
audio,
|
| 162 |
sampling_rate=seq_cfg.sampling_rate,
|
| 163 |
duration_sec=seq_cfg.duration)
|
|
|
|
| 164 |
return video_save_path
|
| 165 |
|
|
|
|
| 166 |
@spaces.GPU
|
| 167 |
@torch.inference_mode()
|
| 168 |
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
|
| 169 |
duration: float):
|
| 170 |
+
prompt = translate_prompt(prompt)
|
| 171 |
+
negative_prompt = translate_prompt(negative_prompt)
|
| 172 |
|
| 173 |
rng = torch.Generator(device=device)
|
| 174 |
rng.manual_seed(seed)
|
|
|
|
| 190 |
|
| 191 |
audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name
|
| 192 |
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
|
|
|
|
| 193 |
return audio_save_path
|
| 194 |
|
| 195 |
+
# μΈν°νμ΄μ€ μ μ
|
| 196 |
+
video_search_tab = gr.Interface(
|
| 197 |
+
fn=search_videos,
|
| 198 |
+
inputs=gr.Textbox(label="κ²μμ΄ μ
λ ₯"),
|
| 199 |
+
outputs=gr.Gallery(label="κ²μ κ²°κ³Ό", columns=4, rows=20),
|
| 200 |
+
css=custom_css
|
| 201 |
+
)
|
| 202 |
|
| 203 |
video_to_audio_tab = gr.Interface(
|
| 204 |
fn=video_to_audio,
|
| 205 |
inputs=[
|
| 206 |
+
gr.Video(label="λΉλμ€"),
|
| 207 |
+
gr.Textbox(label="ν둬ννΈ"),
|
| 208 |
+
gr.Textbox(label="λ€κ±°ν°λΈ ν둬ννΈ", value="music"),
|
| 209 |
+
gr.Number(label="μλ", value=0),
|
| 210 |
+
gr.Number(label="μ€ν
μ", value=25),
|
| 211 |
+
gr.Number(label="κ°μ΄λ κ°λ", value=4.5),
|
| 212 |
+
gr.Number(label="κΈΈμ΄(μ΄)", value=8),
|
| 213 |
],
|
| 214 |
+
outputs="playable_video",
|
| 215 |
+
css=custom_css
|
| 216 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
text_to_audio_tab = gr.Interface(
|
| 219 |
fn=text_to_audio,
|
| 220 |
inputs=[
|
| 221 |
+
gr.Textbox(label="ν둬ννΈ"),
|
| 222 |
+
gr.Textbox(label="λ€κ±°ν°λΈ ν둬ννΈ"),
|
| 223 |
+
gr.Number(label="μλ", value=0),
|
| 224 |
+
gr.Number(label="μ€ν
μ", value=25),
|
| 225 |
+
gr.Number(label="κ°μ΄λ κ°λ", value=4.5),
|
| 226 |
+
gr.Number(label="κΈΈμ΄(μ΄)", value=8),
|
| 227 |
],
|
| 228 |
+
outputs="audio",
|
| 229 |
+
css=custom_css
|
|
|
|
| 230 |
)
|
| 231 |
|
| 232 |
+
# λ©μΈ μ€ν
|
| 233 |
if __name__ == "__main__":
|
| 234 |
+
gr.TabbedInterface(
|
| 235 |
+
[video_search_tab, video_to_audio_tab, text_to_audio_tab],
|
| 236 |
+
["λΉλμ€ κ²μ", "λΉλμ€-μ€λμ€ λ³ν", "ν
μ€νΈ-μ€λμ€ λ³ν"],
|
| 237 |
+
css=custom_css
|
| 238 |
+
).launch(allowed_paths=[output_dir])
|