Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import sys | |
| sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) | |
| #import subprocess | |
| #subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| # wan2.2-main/gradio_ti2v.py | |
| import gradio as gr | |
| import torch | |
| from huggingface_hub import snapshot_download | |
| from PIL import Image | |
| import random | |
| import numpy as np | |
| import spaces | |
| import wan | |
| from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES | |
| from wan.utils.utils import cache_video | |
| import gc | |
| # --- 1. Global Setup and Model Loading --- | |
| print("Starting Gradio App for Wan 2.2 TI2V-5B...") | |
| # Download model snapshots from Hugging Face Hub | |
| repo_id = "Wan-AI/Wan2.2-TI2V-5B" | |
| print(f"Downloading/loading checkpoints for {repo_id}...") | |
| ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False) | |
| print(f"Using checkpoints from {ckpt_dir}") | |
| # Load the model configuration | |
| TASK_NAME = 'ti2v-5B' | |
| cfg = WAN_CONFIGS[TASK_NAME] | |
| FIXED_FPS = 24 | |
| MIN_FRAMES_MODEL = 8 | |
| MAX_FRAMES_MODEL = 121 | |
| # Instantiate the pipeline in the global scope | |
| print("Initializing WanTI2V pipeline...") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| device_id = 0 if torch.cuda.is_available() else -1 | |
| pipeline = wan.WanTI2V( | |
| config=cfg, | |
| checkpoint_dir=ckpt_dir, | |
| device_id=device_id, | |
| rank=0, | |
| t5_fsdp=False, | |
| dit_fsdp=False, | |
| use_sp=False, | |
| t5_cpu=False, | |
| init_on_cpu=False, | |
| convert_model_dtype=True, | |
| ) | |
| print("Pipeline initialized and ready.") | |
| # --- Helper Functions --- | |
| def clear_gpu_memory(): | |
| """Clear GPU memory more thoroughly""" | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| gc.collect() | |
| def select_best_size_for_image(image, available_sizes): | |
| """Select the size option with aspect ratio closest to the input image.""" | |
| if image is None: | |
| return available_sizes[0] # Return first option if no image | |
| img_width, img_height = image.size | |
| img_aspect_ratio = img_height / img_width | |
| best_size = available_sizes[0] | |
| best_diff = float('inf') | |
| for size_str in available_sizes: | |
| # Parse size string like "704*1280" | |
| height, width = map(int, size_str.split('*')) | |
| size_aspect_ratio = height / width | |
| diff = abs(img_aspect_ratio - size_aspect_ratio) | |
| if diff < best_diff: | |
| best_diff = diff | |
| best_size = size_str | |
| return best_size | |
| def handle_image_upload(image): | |
| """Handle image upload and return the best matching size.""" | |
| if image is None: | |
| return gr.update() | |
| pil_image = Image.fromarray(image).convert("RGB") | |
| available_sizes = list(SUPPORTED_SIZES[TASK_NAME]) | |
| best_size = select_best_size_for_image(pil_image, available_sizes) | |
| return gr.update(value=best_size) | |
| def validate_inputs(image, prompt, duration_seconds): | |
| """Validate user inputs""" | |
| errors = [] | |
| if not prompt or len(prompt.strip()) < 5: | |
| errors.append("Prompt must be at least 5 characters long.") | |
| if image is not None: | |
| img = Image.fromarray(image) | |
| if img.size[0] * img.size[1] > 4096 * 4096: | |
| errors.append("Image size is too large (maximum 4096x4096).") | |
| if duration_seconds > 5.0 and image is None: | |
| errors.append("Videos longer than 5 seconds require an input image.") | |
| return errors | |
| def get_duration(image, | |
| prompt, | |
| size, | |
| duration_seconds, | |
| sampling_steps, | |
| guide_scale, | |
| shift, | |
| seed, | |
| progress): | |
| """Calculate dynamic GPU duration based on parameters.""" | |
| if sampling_steps > 35 and duration_seconds >= 2: | |
| return 120 | |
| elif sampling_steps < 35 or duration_seconds < 2: | |
| return 105 | |
| else: | |
| return 90 | |
| def apply_template(template, current_prompt): | |
| """Apply prompt template""" | |
| if "{subject}" in template: | |
| # Extract the main subject from current prompt (simple heuristic) | |
| subject = current_prompt.split(",")[0] if "," in current_prompt else current_prompt | |
| return template.replace("{subject}", subject) | |
| return template + " " + current_prompt | |
| # --- 2. Gradio Inference Function --- | |
| def generate_video( | |
| image, | |
| prompt, | |
| size, | |
| duration_seconds, | |
| sampling_steps, | |
| guide_scale, | |
| shift, | |
| seed, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| """The main function to generate video, called by the Gradio interface.""" | |
| # Validate inputs | |
| errors = validate_inputs(image, prompt, duration_seconds) | |
| if errors: | |
| raise gr.Error("\n".join(errors)) | |
| progress(0, desc="Setting up...") | |
| if seed == -1: | |
| seed = random.randint(0, sys.maxsize) | |
| progress(0.1, desc="Processing image...") | |
| input_image = None | |
| if image is not None: | |
| input_image = Image.fromarray(image).convert("RGB") | |
| # Resize image to match selected size | |
| target_height, target_width = map(int, size.split('*')) | |
| input_image = input_image.resize((target_width, target_height)) | |
| # Calculate number of frames based on duration | |
| num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
| progress(0.2, desc="Generating video...") | |
| try: | |
| video_tensor = pipeline.generate( | |
| input_prompt=prompt, | |
| img=input_image, # Pass None for T2V, Image for I2V | |
| size=SIZE_CONFIGS[size], | |
| max_area=MAX_AREA_CONFIGS[size], | |
| frame_num=num_frames, # Use calculated frames instead of cfg.frame_num | |
| shift=shift, | |
| sample_solver='unipc', | |
| sampling_steps=int(sampling_steps), | |
| guide_scale=guide_scale, | |
| seed=seed, | |
| offload_model=True | |
| ) | |
| progress(0.9, desc="Saving video...") | |
| # Save the video to a temporary file | |
| video_path = cache_video( | |
| tensor=video_tensor[None], # Add a batch dimension | |
| save_file=None, # cache_video will create a temp file | |
| fps=cfg.sample_fps, | |
| normalize=True, | |
| value_range=(-1, 1) | |
| ) | |
| progress(1.0, desc="Complete!") | |
| except torch.cuda.OutOfMemoryError: | |
| clear_gpu_memory() | |
| raise gr.Error("GPU out of memory. Please try with lower settings.") | |
| except Exception as e: | |
| raise gr.Error(f"Video generation failed: {str(e)}") | |
| finally: | |
| if 'video_tensor' in locals(): | |
| del video_tensor | |
| clear_gpu_memory() | |
| return video_path | |
| # --- 3. Gradio Interface --- | |
| css = """ | |
| .gradio-container {max-width: 1100px !important; margin: 0 auto} | |
| #output_video {height: 500px;} | |
| #input_image {height: 500px;} | |
| .template-btn {margin: 2px !important;} | |
| """ | |
| # Default prompt with motion emphasis | |
| DEFAULT_PROMPT = "Generate a video with smooth and natural movement. Objects should have visible motion while maintaining fluid transitions." | |
| # Prompt templates | |
| templates = { | |
| "Cinematic": "cinematic shot of {subject}, professional lighting, smooth camera movement, 4k quality", | |
| "Animation": "animated style {subject}, vibrant colors, fluid motion, dynamic movement", | |
| "Nature": "nature documentary footage of {subject}, wildlife photography, natural movement", | |
| "Slow Motion": "slow motion capture of {subject}, high speed camera, detailed motion", | |
| "Action": "dynamic action shot of {subject}, fast paced movement, energetic motion" | |
| } | |
| with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo: | |
| gr.Markdown(""" | |
| # Wan 2.2 TI2V Enhanced | |
| Generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model** | |
| [[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B), [[paper]](https://arxiv.org/abs/2503.20314) | |
| ### 💡 Tips for best results: | |
| - 🖼️ Upload an image for better control over the video content | |
| - ⏱️ Longer videos require more processing time | |
| - 🎯 Be specific and descriptive in your prompts | |
| - 🎬 Include motion-related keywords for dynamic videos | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image") | |
| prompt_input = gr.Textbox( | |
| label="Prompt", | |
| value=DEFAULT_PROMPT, | |
| lines=3, | |
| placeholder="Describe the video you want to generate..." | |
| ) | |
| # Prompt templates section | |
| with gr.Accordion("Prompt Templates", open=False): | |
| gr.Markdown("Click a template to apply it to your prompt:") | |
| with gr.Row(): | |
| template_buttons = {} | |
| for name, template in templates.items(): | |
| btn = gr.Button(name, size="sm", elem_classes=["template-btn"]) | |
| template_buttons[name] = (btn, template) | |
| # Connect template buttons | |
| for name, (btn, template) in template_buttons.items(): | |
| btn.click( | |
| fn=lambda t=template, p=prompt_input: apply_template(t, p), | |
| inputs=[prompt_input], | |
| outputs=prompt_input | |
| ) | |
| duration_input = gr.Slider( | |
| minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), | |
| maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), | |
| step=0.1, | |
| value=2.0, | |
| label="Duration (seconds)", | |
| info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." | |
| ) | |
| size_input = gr.Dropdown( | |
| label="Output Resolution", | |
| choices=list(SUPPORTED_SIZES[TASK_NAME]), | |
| value="704*1280" | |
| ) | |
| with gr.Column(scale=2): | |
| video_output = gr.Video(label="Generated Video", elem_id="output_video") | |
| # Status indicators | |
| with gr.Row(): | |
| status_text = gr.Textbox( | |
| label="Status", | |
| value="Ready", | |
| interactive=False, | |
| max_lines=1 | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| steps_input = gr.Slider( | |
| label="Sampling Steps", | |
| minimum=10, | |
| maximum=50, | |
| value=38, | |
| step=1, | |
| info="Higher values = better quality but slower" | |
| ) | |
| scale_input = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| value=cfg.sample_guide_scale, | |
| step=0.1, | |
| info="Higher values = closer to prompt but less creative" | |
| ) | |
| shift_input = gr.Slider( | |
| label="Sample Shift", | |
| minimum=1.0, | |
| maximum=20.0, | |
| value=cfg.sample_shift, | |
| step=0.1, | |
| info="Affects the sampling process dynamics" | |
| ) | |
| seed_input = gr.Number( | |
| label="Seed (-1 for random)", | |
| value=-1, | |
| precision=0, | |
| info="Use same seed for reproducible results" | |
| ) | |
| run_button = gr.Button("Generate Video", variant="primary", size="lg") | |
| # Add image upload handler | |
| image_input.upload( | |
| fn=handle_image_upload, | |
| inputs=[image_input], | |
| outputs=[size_input] | |
| ) | |
| image_input.clear( | |
| fn=handle_image_upload, | |
| inputs=[image_input], | |
| outputs=[size_input] | |
| ) | |
| # Update status when generating | |
| def update_status_and_generate(*args): | |
| status_text.value = "Generating..." | |
| try: | |
| result = generate_video(*args) | |
| status_text.value = "Complete!" | |
| return result | |
| except Exception as e: | |
| status_text.value = "Error occurred" | |
| raise e | |
| example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG") | |
| gr.Examples( | |
| examples=[ | |
| [example_image_path, "The cat removes the glasses from its eyes with smooth motion.", "1280*704", 1.5], | |
| [None, "A cinematic shot of a boat sailing on calm waves with gentle rocking motion at sunset.", "1280*704", 2.0], | |
| [None, "Drone footage flying smoothly over a futuristic city with flying cars in continuous motion.", "1280*704", 2.0], | |
| [None, DEFAULT_PROMPT + " A waterfall cascading down rocks.", "704*1280", 2.5], | |
| [None, DEFAULT_PROMPT + " Birds flying across a cloudy sky.", "1280*704", 3.0], | |
| ], | |
| inputs=[image_input, prompt_input, size_input, duration_input], | |
| outputs=video_output, | |
| fn=generate_video, | |
| cache_examples=False, | |
| ) | |
| run_button.click( | |
| fn=generate_video, | |
| inputs=[image_input, prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input], | |
| outputs=video_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |