Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| import spaces | |
| # κΈ°λ³Έ μ€μ | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # λͺ¨λΈ λ‘λ | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-schnell", | |
| torch_dtype=dtype | |
| ).to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| # νλ‘μ°μ°¨νΈ μμ | |
| EXAMPLES = [ | |
| { | |
| "title": "Business Workflow", | |
| "prompt": """A hand-drawn style flowchart, vibrant colors, minimalistic icons. | |
| BUSINESS WORKFLOW | |
| βββ START [Green Button ~40px] | |
| β βββ COLLECT REQUIREMENTS [Folder Icon] | |
| β βββ ANALYZE DATA [Chart Icon] | |
| βββ IMPLEMENTATION [Coding Symbol ~50px] | |
| β βββ FRONTEND [Browser Icon] | |
| β βββ BACKEND [Server Icon] | |
| βββ TEST & INTEGRATION [Gear Icon ~45px] | |
| βββ DEPLOY | |
| βββ END [Checkered Flag ~40px]""", | |
| "width": 1024, | |
| "height": 1024 | |
| }, | |
| { | |
| "title": "Software Release Flow", | |
| "prompt": """A hand-drawn style flowchart, pastel colors, arrows between stages. | |
| SOFTWARE RELEASE | |
| βββ FEATURE BRANCH [Git Branch Icon ~45px] | |
| β βββ DEVELOPMENT [Code Editor] | |
| β βββ UNIT TEST [Check Mark] | |
| βββ MERGE TO MAIN [Pull Request Icon] | |
| β βββ CI/CD [Pipeline Icon ~40px] | |
| β βββ BUILD [Gear Icon] | |
| βββ PRODUCTION | |
| βββ DEPLOY [Cloud Upload Icon]""", | |
| "width": 1024, | |
| "height": 1024 | |
| }, | |
| { | |
| "title": "E-Commerce Checkout", | |
| "prompt": """A hand-drawn style flowchart, light watercolor, user journey from cart to payment. | |
| E-COMMERCE CHECKOUT | |
| βββ CART [Shopping Cart ~40px] | |
| β βββ LOGIN [User Icon] | |
| β βββ ADDRESS [Location Pin] | |
| βββ PAYMENT [Credit Card Icon ~45px] | |
| β βββ VALIDATION [Lock Icon] | |
| β βββ CONFIRMATION [Receipt Icon] | |
| βββ ORDER COMPLETE | |
| βββ THANK YOU [Smiley Icon]""", | |
| "width": 1024, | |
| "height": 1024 | |
| }, | |
| { | |
| "title": "Data Pipeline", | |
| "prompt": """A hand-drawn style flowchart, tech-focused, neon highlights, showing data flow. | |
| DATA PIPELINE | |
| βββ INGESTION [Database Icon ~50px] | |
| β βββ STREAMING [Kafka Symbol] | |
| β βββ BATCH [CSV/JSON Files] | |
| βββ TRANSFORMATION [Gear Icon ~45px] | |
| β βββ CLEANING [Brush Icon] | |
| β βββ AGGREGATION [Bar Graph] | |
| βββ STORAGE [Cloud Icon ~50px] | |
| βββ ANALYTICS | |
| βββ DASHBOARDS [Monitor Icon]""", | |
| "width": 1024, | |
| "height": 1024 | |
| }, | |
| { | |
| "title": "Machine Learning Lifecycle", | |
| "prompt": """A hand-drawn style flowchart, pastel palette, ML steps from data to deployment. | |
| ML LIFECYCLE | |
| βββ DATA COLLECTION [Folder Icon ~45px] | |
| β βββ DATA CLEANING [Soap Icon] | |
| β βββ FEATURE ENGINEERING [Puzzle Icon] | |
| βββ MODEL TRAINING [Robot Icon ~50px] | |
| β βββ HYPERPARAM TUNING [Dial Knob] | |
| β βββ EVALUATION [Magnifier Icon] | |
| βββ DEPLOYMENT [Cloud Icon ~45px] | |
| βββ MONITORING | |
| βββ FEEDBACK LOOP [Arrow Circle Icon]""", | |
| "width": 1024, | |
| "height": 1024 | |
| } | |
| ] | |
| # Convert examples to Gradio format (if needed) | |
| GRADIO_EXAMPLES = [ | |
| [example["prompt"], example["width"], example["height"]] | |
| for example in EXAMPLES | |
| ] | |
| def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=0.0 # νλ‘μ°μ°¨νΈ ν μ€νΈμ μ§μ€νλ, μμ λ‘μ΄ νν | |
| ).images[0] | |
| return image, seed | |
| # CSS μ€νμΌ (κΈ°μ‘΄ ꡬ쑰 μ μ§, λͺ μΉλ§ μΌλΆ μμ ) | |
| css = """ | |
| .container { | |
| display: flex; | |
| flex-direction: row; | |
| height: 100%; | |
| } | |
| .input-column { | |
| flex: 1; | |
| padding: 20px; | |
| border-right: 2px solid #eee; | |
| max-width: 800px; | |
| } | |
| .examples-column { | |
| flex: 1; | |
| padding: 20px; | |
| overflow-y: auto; | |
| background: #f7f7f7; | |
| } | |
| .title { | |
| text-align: center; | |
| color: #2a2a2a; | |
| padding: 20px; | |
| font-size: 2.5em; | |
| font-weight: bold; | |
| background: linear-gradient(90deg, #f0f0f0 0%, #ffffff 100%); | |
| border-bottom: 3px solid #ddd; | |
| margin-bottom: 30px; | |
| } | |
| .subtitle { | |
| text-align: center; | |
| color: #666; | |
| margin-bottom: 30px; | |
| } | |
| .input-box { | |
| background: white; | |
| padding: 20px; | |
| border-radius: 10px; | |
| box-shadow: 0 2px 10px rgba(0,0,0,0.1); | |
| margin-bottom: 20px; | |
| width: 100%; | |
| } | |
| .input-box textarea { | |
| width: 100% !important; | |
| min-width: 600px !important; | |
| font-size: 14px !important; | |
| line-height: 1.5 !important; | |
| padding: 12px !important; | |
| } | |
| .example-card { | |
| background: white; | |
| padding: 15px; | |
| margin: 10px 0; | |
| border-radius: 8px; | |
| box-shadow: 0 2px 5px rgba(0,0,0,0.05); | |
| } | |
| .example-title { | |
| font-weight: bold; | |
| color: #2a2a2a; | |
| margin-bottom: 10px; | |
| } | |
| .contain { | |
| max-width: 1400px !important; | |
| margin: 0 auto !important; | |
| } | |
| .input-area { | |
| flex: 2 !important; | |
| } | |
| .examples-area { | |
| flex: 1 !important; | |
| } | |
| """ | |
| # Gradio μΈν°νμ΄μ€ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown( | |
| """ | |
| <div class="title">GINI Flowchart</div> | |
| <div class="subtitle">Create professional process flowcharts using FLUX AI</div> | |
| """) | |
| with gr.Row(equal_height=True): | |
| # μΌμͺ½ μ λ ₯ μ»¬λΌ | |
| with gr.Column(elem_id="input-column", scale=2): | |
| with gr.Group(elem_classes="input-box"): | |
| prompt = gr.Text( | |
| label="Flowchart Prompt", | |
| placeholder="Enter your process flowchart structure...", | |
| lines=10, | |
| elem_classes="prompt-input" | |
| ) | |
| run_button = gr.Button("Generate Flowchart", variant="primary") | |
| result = gr.Image(label="Generated Flowchart") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=4, | |
| ) | |
| # μ€λ₯Έμͺ½ μμ μ»¬λΌ | |
| with gr.Column(elem_id="examples-column", scale=1): | |
| gr.Markdown("### Example Flowcharts") | |
| for example in EXAMPLES: | |
| with gr.Group(elem_classes="example-card"): | |
| gr.Markdown(f"#### {example['title']}") | |
| gr.Markdown(f"```\n{example['prompt']}\n```") | |
| def create_example_handler(ex): | |
| def handler(): | |
| return { | |
| prompt: ex["prompt"], | |
| width: ex["width"], | |
| height: ex["height"] | |
| } | |
| return handler | |
| gr.Button("Use This Example", size="sm").click( | |
| fn=create_example_handler(example), | |
| outputs=[prompt, width, height] | |
| ) | |
| # μ΄λ²€νΈ λ°μΈλ© (λ²νΌ ν΄λ¦ & ν μ€νΈλ°μ€ μν°) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue() | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=False, | |
| show_error=True, | |
| debug=True | |
| ) | |