Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import numpy as np
|
|
| 5 |
import spaces
|
| 6 |
import torch
|
| 7 |
from diffusers import DiffusionPipeline
|
|
|
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
|
@@ -33,9 +34,14 @@ def inference(
|
|
| 33 |
):
|
| 34 |
if randomize_seed:
|
| 35 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
image = pipeline(
|
| 40 |
prompt=prompt,
|
| 41 |
guidance_scale=guidance_scale,
|
|
@@ -43,9 +49,11 @@ def inference(
|
|
| 43 |
width=width,
|
| 44 |
height=height,
|
| 45 |
generator=generator,
|
| 46 |
-
|
| 47 |
).images[0]
|
| 48 |
|
|
|
|
|
|
|
| 49 |
return image, seed
|
| 50 |
|
| 51 |
|
|
@@ -118,14 +126,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 118 |
value=3.5,
|
| 119 |
)
|
| 120 |
|
| 121 |
-
lora_scale = gr.Slider(
|
| 122 |
-
label="LoRA scale",
|
| 123 |
-
minimum=0.0,
|
| 124 |
-
maximum=1.0,
|
| 125 |
-
step=0.1,
|
| 126 |
-
value=1.0,
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
num_inference_steps = gr.Slider(
|
| 130 |
label="Number of inference steps",
|
| 131 |
minimum=1,
|
|
@@ -134,7 +134,15 @@ with gr.Blocks(css=css) as demo:
|
|
| 134 |
value=30,
|
| 135 |
)
|
| 136 |
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
gr.on(
|
| 140 |
triggers=[run_button.click, prompt.submit],
|
|
@@ -147,8 +155,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 147 |
height,
|
| 148 |
guidance_scale,
|
| 149 |
num_inference_steps,
|
|
|
|
| 150 |
],
|
| 151 |
outputs=[result, seed],
|
| 152 |
)
|
| 153 |
|
| 154 |
-
demo.queue()
|
|
|
|
|
|
| 5 |
import spaces
|
| 6 |
import torch
|
| 7 |
from diffusers import DiffusionPipeline
|
| 8 |
+
from PIL import Image
|
| 9 |
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
|
|
|
| 34 |
):
|
| 35 |
if randomize_seed:
|
| 36 |
seed = random.randint(0, MAX_SEED)
|
| 37 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 38 |
|
| 39 |
+
progress(0, "Starting image generation...")
|
| 40 |
|
| 41 |
+
for i in range(1, steps + 1):
|
| 42 |
+
if i % (steps // 10) == 0:
|
| 43 |
+
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
| 44 |
+
|
| 45 |
image = pipeline(
|
| 46 |
prompt=prompt,
|
| 47 |
guidance_scale=guidance_scale,
|
|
|
|
| 49 |
width=width,
|
| 50 |
height=height,
|
| 51 |
generator=generator,
|
| 52 |
+
joint_attention_kwargs={"scale": lora_scale},
|
| 53 |
).images[0]
|
| 54 |
|
| 55 |
+
progress(100, "Completed!")
|
| 56 |
+
|
| 57 |
return image, seed
|
| 58 |
|
| 59 |
|
|
|
|
| 126 |
value=3.5,
|
| 127 |
)
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
num_inference_steps = gr.Slider(
|
| 130 |
label="Number of inference steps",
|
| 131 |
minimum=1,
|
|
|
|
| 134 |
value=30,
|
| 135 |
)
|
| 136 |
|
| 137 |
+
lora_scale = gr.Slider(
|
| 138 |
+
label="LoRA scale",
|
| 139 |
+
minimum=0.0,
|
| 140 |
+
maximum=1.0,
|
| 141 |
+
step=0.1,
|
| 142 |
+
value=1.0,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
gr.Examples(examples=examples, inputs=[prompt], outputs=[Image.open("./example.png")])
|
| 146 |
|
| 147 |
gr.on(
|
| 148 |
triggers=[run_button.click, prompt.submit],
|
|
|
|
| 155 |
height,
|
| 156 |
guidance_scale,
|
| 157 |
num_inference_steps,
|
| 158 |
+
lora_scale,
|
| 159 |
],
|
| 160 |
outputs=[result, seed],
|
| 161 |
)
|
| 162 |
|
| 163 |
+
demo.queue()
|
| 164 |
+
demo.launch()
|