Spaces:
Paused
Paused
Upload 2 files
Browse files- app (28).py +427 -0
- requirements (9).txt +16 -0
app (28).py
ADDED
|
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import argparse
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
from os import path
|
| 6 |
+
import shutil
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from safetensors.torch import load_file
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import torch
|
| 12 |
+
from diffusers import FluxPipeline
|
| 13 |
+
from diffusers.pipelines.stable_diffusion import safety_checker
|
| 14 |
+
from PIL import Image
|
| 15 |
+
from transformers import pipeline
|
| 16 |
+
import replicate
|
| 17 |
+
import logging
|
| 18 |
+
import requests
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
import cv2
|
| 21 |
+
import numpy as np
|
| 22 |
+
import sys
|
| 23 |
+
import io
|
| 24 |
+
# 로깅 설정
|
| 25 |
+
logging.basicConfig(level=logging.INFO)
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
+
|
| 28 |
+
# Setup and initialization code
|
| 29 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
| 30 |
+
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# API 설정
|
| 34 |
+
CATBOX_USER_HASH = "e7a96fc68dd4c7d2954040cd5"
|
| 35 |
+
REPLICATE_API_TOKEN = os.getenv("API_KEY")
|
| 36 |
+
|
| 37 |
+
# 환경 변수 설정
|
| 38 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
| 39 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
| 40 |
+
os.environ["HF_HOME"] = cache_path
|
| 41 |
+
|
| 42 |
+
# CUDA 설정
|
| 43 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 44 |
+
|
| 45 |
+
# 번역기 초기화
|
| 46 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if not path.exists(cache_path):
|
| 50 |
+
os.makedirs(cache_path, exist_ok=True)
|
| 51 |
+
|
| 52 |
+
def check_api_key():
|
| 53 |
+
"""API 키 확인 및 설정"""
|
| 54 |
+
if not REPLICATE_API_TOKEN:
|
| 55 |
+
logger.error("Replicate API key not found")
|
| 56 |
+
return False
|
| 57 |
+
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
|
| 58 |
+
logger.info("Replicate API token set successfully")
|
| 59 |
+
return True
|
| 60 |
+
|
| 61 |
+
def translate_if_korean(text):
|
| 62 |
+
"""한글이 포함된 경우 영어로 번역"""
|
| 63 |
+
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):
|
| 64 |
+
translation = translator(text)[0]['translation_text']
|
| 65 |
+
return translation
|
| 66 |
+
return text
|
| 67 |
+
|
| 68 |
+
def filter_prompt(prompt):
|
| 69 |
+
inappropriate_keywords = [
|
| 70 |
+
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
|
| 71 |
+
"erotic", "sensual", "seductive", "provocative", "intimate",
|
| 72 |
+
"violence", "gore", "blood", "death", "kill", "murder", "torture",
|
| 73 |
+
"drug", "suicide", "abuse", "hate", "discrimination"
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
prompt_lower = prompt.lower()
|
| 77 |
+
for keyword in inappropriate_keywords:
|
| 78 |
+
if keyword in prompt_lower:
|
| 79 |
+
return False, "부적절한 내용이 포함된 프롬프트입니다."
|
| 80 |
+
return True, prompt
|
| 81 |
+
|
| 82 |
+
def process_prompt(prompt):
|
| 83 |
+
"""프롬프트 전처리 (번역 및 필터링)"""
|
| 84 |
+
translated_prompt = translate_if_korean(prompt)
|
| 85 |
+
is_safe, filtered_prompt = filter_prompt(translated_prompt)
|
| 86 |
+
return is_safe, filtered_prompt
|
| 87 |
+
|
| 88 |
+
class timer:
|
| 89 |
+
def __init__(self, method_name="timed process"):
|
| 90 |
+
self.method = method_name
|
| 91 |
+
def __enter__(self):
|
| 92 |
+
self.start = time.time()
|
| 93 |
+
print(f"{self.method} starts")
|
| 94 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 95 |
+
end = time.time()
|
| 96 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 97 |
+
|
| 98 |
+
# Model initialization
|
| 99 |
+
if not path.exists(cache_path):
|
| 100 |
+
os.makedirs(cache_path, exist_ok=True)
|
| 101 |
+
|
| 102 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
| 103 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
|
| 104 |
+
pipe.fuse_lora(lora_scale=0.125)
|
| 105 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 106 |
+
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
| 107 |
+
|
| 108 |
+
def upload_to_catbox(image_path):
|
| 109 |
+
"""catbox.moe API를 사용하여 이미지 업로드"""
|
| 110 |
+
try:
|
| 111 |
+
logger.info(f"Preparing to upload image: {image_path}")
|
| 112 |
+
url = "https://catbox.moe/user/api.php"
|
| 113 |
+
|
| 114 |
+
file_extension = Path(image_path).suffix.lower()
|
| 115 |
+
if file_extension not in ['.jpg', '.jpeg', '.png', '.gif']:
|
| 116 |
+
logger.error(f"Unsupported file type: {file_extension}")
|
| 117 |
+
return None
|
| 118 |
+
|
| 119 |
+
files = {
|
| 120 |
+
'fileToUpload': (
|
| 121 |
+
os.path.basename(image_path),
|
| 122 |
+
open(image_path, 'rb'),
|
| 123 |
+
'image/jpeg' if file_extension in ['.jpg', '.jpeg'] else 'image/png'
|
| 124 |
+
)
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
data = {
|
| 128 |
+
'reqtype': 'fileupload',
|
| 129 |
+
'userhash': CATBOX_USER_HASH
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
response = requests.post(url, files=files, data=data)
|
| 133 |
+
|
| 134 |
+
if response.status_code == 200 and response.text.startswith('http'):
|
| 135 |
+
image_url = response.text
|
| 136 |
+
logger.info(f"Image uploaded successfully: {image_url}")
|
| 137 |
+
return image_url
|
| 138 |
+
else:
|
| 139 |
+
raise Exception(f"Upload failed: {response.text}")
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
logger.error(f"Image upload error: {str(e)}")
|
| 143 |
+
return None
|
| 144 |
+
|
| 145 |
+
def add_watermark(video_path):
|
| 146 |
+
"""OpenCV를 사용하여 비디오에 워터마크 추가"""
|
| 147 |
+
try:
|
| 148 |
+
cap = cv2.VideoCapture(video_path)
|
| 149 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 150 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 151 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 152 |
+
|
| 153 |
+
text = "GiniGEN.AI"
|
| 154 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 155 |
+
font_scale = height * 0.05 / 30
|
| 156 |
+
thickness = 2
|
| 157 |
+
color = (255, 255, 255)
|
| 158 |
+
|
| 159 |
+
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
|
| 160 |
+
margin = int(height * 0.02)
|
| 161 |
+
x_pos = width - text_width - margin
|
| 162 |
+
y_pos = height - margin
|
| 163 |
+
|
| 164 |
+
output_path = "watermarked_output.mp4"
|
| 165 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 166 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 167 |
+
|
| 168 |
+
while cap.isOpened():
|
| 169 |
+
ret, frame = cap.read()
|
| 170 |
+
if not ret:
|
| 171 |
+
break
|
| 172 |
+
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
|
| 173 |
+
out.write(frame)
|
| 174 |
+
|
| 175 |
+
cap.release()
|
| 176 |
+
out.release()
|
| 177 |
+
|
| 178 |
+
return output_path
|
| 179 |
+
|
| 180 |
+
except Exception as e:
|
| 181 |
+
logger.error(f"Error adding watermark: {str(e)}")
|
| 182 |
+
return video_path
|
| 183 |
+
|
| 184 |
+
def generate_video(image, prompt):
|
| 185 |
+
logger.info("Starting video generation")
|
| 186 |
+
try:
|
| 187 |
+
if not check_api_key():
|
| 188 |
+
return "Replicate API key not properly configured"
|
| 189 |
+
|
| 190 |
+
if not image:
|
| 191 |
+
logger.error("No image provided")
|
| 192 |
+
return "Please upload an image"
|
| 193 |
+
|
| 194 |
+
image_url = upload_to_catbox(image)
|
| 195 |
+
if not image_url:
|
| 196 |
+
return "Failed to upload image"
|
| 197 |
+
|
| 198 |
+
input_data = {
|
| 199 |
+
"prompt": prompt,
|
| 200 |
+
"first_frame_image": image_url
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
try:
|
| 204 |
+
replicate.Client(api_token=REPLICATE_API_TOKEN)
|
| 205 |
+
output = replicate.run(
|
| 206 |
+
"minimax/video-01-live",
|
| 207 |
+
input=input_data
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
temp_file = "temp_output.mp4"
|
| 211 |
+
|
| 212 |
+
if hasattr(output, 'read'):
|
| 213 |
+
with open(temp_file, "wb") as file:
|
| 214 |
+
file.write(output.read())
|
| 215 |
+
elif isinstance(output, str):
|
| 216 |
+
response = requests.get(output)
|
| 217 |
+
with open(temp_file, "wb") as file:
|
| 218 |
+
file.write(response.content)
|
| 219 |
+
|
| 220 |
+
final_video = add_watermark(temp_file)
|
| 221 |
+
return final_video
|
| 222 |
+
|
| 223 |
+
except Exception as api_error:
|
| 224 |
+
logger.error(f"API call failed: {str(api_error)}")
|
| 225 |
+
return f"API call failed: {str(api_error)}"
|
| 226 |
+
|
| 227 |
+
except Exception as e:
|
| 228 |
+
logger.error(f"Unexpected error: {str(e)}")
|
| 229 |
+
return f"Unexpected error: {str(e)}"
|
| 230 |
+
|
| 231 |
+
def save_image(image):
|
| 232 |
+
"""Save the generated image temporarily"""
|
| 233 |
+
try:
|
| 234 |
+
# 임시 디렉토리에 저장
|
| 235 |
+
temp_dir = "temp"
|
| 236 |
+
if not os.path.exists(temp_dir):
|
| 237 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 238 |
+
|
| 239 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 240 |
+
filepath = os.path.join(temp_dir, f"temp_{timestamp}.png")
|
| 241 |
+
|
| 242 |
+
if not isinstance(image, Image.Image):
|
| 243 |
+
image = Image.fromarray(image)
|
| 244 |
+
|
| 245 |
+
if image.mode != 'RGB':
|
| 246 |
+
image = image.convert('RGB')
|
| 247 |
+
|
| 248 |
+
image.save(filepath, format='PNG', optimize=True, quality=100)
|
| 249 |
+
|
| 250 |
+
return filepath
|
| 251 |
+
except Exception as e:
|
| 252 |
+
logger.error(f"Error in save_image: {str(e)}")
|
| 253 |
+
return None
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
css = """
|
| 258 |
+
footer {
|
| 259 |
+
visibility: hidden;
|
| 260 |
+
}
|
| 261 |
+
"""
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
# Gradio 인터페이스 생성
|
| 265 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
| 266 |
+
gr.HTML('<div class="title">AI Image & Video Generator</div>')
|
| 267 |
+
|
| 268 |
+
with gr.Tabs():
|
| 269 |
+
with gr.Tab("Image Generation"):
|
| 270 |
+
with gr.Row():
|
| 271 |
+
with gr.Column(scale=3):
|
| 272 |
+
img_prompt = gr.Textbox(
|
| 273 |
+
label="Image Description",
|
| 274 |
+
placeholder="이미지 설명을 입력하세요... (한글 입력 가능)",
|
| 275 |
+
lines=3
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 279 |
+
with gr.Row():
|
| 280 |
+
height = gr.Slider(
|
| 281 |
+
label="Height",
|
| 282 |
+
minimum=256,
|
| 283 |
+
maximum=1152,
|
| 284 |
+
step=64,
|
| 285 |
+
value=1024
|
| 286 |
+
)
|
| 287 |
+
width = gr.Slider(
|
| 288 |
+
label="Width",
|
| 289 |
+
minimum=256,
|
| 290 |
+
maximum=1152,
|
| 291 |
+
step=64,
|
| 292 |
+
value=1024
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
with gr.Row():
|
| 296 |
+
steps = gr.Slider(
|
| 297 |
+
label="Inference Steps",
|
| 298 |
+
minimum=6,
|
| 299 |
+
maximum=25,
|
| 300 |
+
step=1,
|
| 301 |
+
value=8
|
| 302 |
+
)
|
| 303 |
+
scales = gr.Slider(
|
| 304 |
+
label="Guidance Scale",
|
| 305 |
+
minimum=0.0,
|
| 306 |
+
maximum=5.0,
|
| 307 |
+
step=0.1,
|
| 308 |
+
value=3.5
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
def get_random_seed():
|
| 312 |
+
return torch.randint(0, 1000000, (1,)).item()
|
| 313 |
+
|
| 314 |
+
seed = gr.Number(
|
| 315 |
+
label="Seed",
|
| 316 |
+
value=get_random_seed(),
|
| 317 |
+
precision=0
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
randomize_seed = gr.Button("🎲 Randomize Seed", elem_classes=["generate-btn"])
|
| 321 |
+
|
| 322 |
+
generate_btn = gr.Button(
|
| 323 |
+
"✨ Generate Image",
|
| 324 |
+
elem_classes=["generate-btn"]
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
with gr.Column(scale=4):
|
| 328 |
+
img_output = gr.Image(
|
| 329 |
+
label="Generated Image",
|
| 330 |
+
type="pil",
|
| 331 |
+
format="png"
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
with gr.Tab("Amazing Video Generation"):
|
| 336 |
+
with gr.Row():
|
| 337 |
+
with gr.Column(scale=3):
|
| 338 |
+
video_prompt = gr.Textbox(
|
| 339 |
+
label="Video Description",
|
| 340 |
+
placeholder="비디오 설명을 입력하세요... (한글 입력 가능)",
|
| 341 |
+
lines=3
|
| 342 |
+
)
|
| 343 |
+
upload_image = gr.Image(
|
| 344 |
+
type="filepath",
|
| 345 |
+
label="Upload First Frame Image"
|
| 346 |
+
)
|
| 347 |
+
video_generate_btn = gr.Button(
|
| 348 |
+
"🎬 Generate Video",
|
| 349 |
+
elem_classes=["generate-btn"]
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
with gr.Column(scale=4):
|
| 353 |
+
video_output = gr.Video(label="Generated Video")
|
| 354 |
+
|
| 355 |
+
@spaces.GPU
|
| 356 |
+
def process_and_save_image(height, width, steps, scales, prompt, seed):
|
| 357 |
+
is_safe, translated_prompt = process_prompt(prompt)
|
| 358 |
+
if not is_safe:
|
| 359 |
+
gr.Warning("부적절한 내용이 포함된 프롬프트입니다.")
|
| 360 |
+
return None
|
| 361 |
+
|
| 362 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
| 363 |
+
try:
|
| 364 |
+
generated_image = pipe(
|
| 365 |
+
prompt=[translated_prompt],
|
| 366 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
| 367 |
+
num_inference_steps=int(steps),
|
| 368 |
+
guidance_scale=float(scales),
|
| 369 |
+
height=int(height),
|
| 370 |
+
width=int(width),
|
| 371 |
+
max_sequence_length=256
|
| 372 |
+
).images[0]
|
| 373 |
+
|
| 374 |
+
if not isinstance(generated_image, Image.Image):
|
| 375 |
+
generated_image = Image.fromarray(generated_image)
|
| 376 |
+
|
| 377 |
+
if generated_image.mode != 'RGB':
|
| 378 |
+
generated_image = generated_image.convert('RGB')
|
| 379 |
+
|
| 380 |
+
img_byte_arr = io.BytesIO()
|
| 381 |
+
generated_image.save(img_byte_arr, format='PNG')
|
| 382 |
+
|
| 383 |
+
return Image.open(io.BytesIO(img_byte_arr.getvalue()))
|
| 384 |
+
except Exception as e:
|
| 385 |
+
logger.error(f"Error in image generation: {str(e)}")
|
| 386 |
+
return None
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def process_and_generate_video(image, prompt):
|
| 391 |
+
is_safe, translated_prompt = process_prompt(prompt)
|
| 392 |
+
if not is_safe:
|
| 393 |
+
gr.Warning("부적절한 내용이 포함된 프롬프트입니다.")
|
| 394 |
+
return None
|
| 395 |
+
return generate_video(image, translated_prompt)
|
| 396 |
+
|
| 397 |
+
def update_seed():
|
| 398 |
+
return get_random_seed()
|
| 399 |
+
|
| 400 |
+
generate_btn.click(
|
| 401 |
+
process_and_save_image,
|
| 402 |
+
inputs=[height, width, steps, scales, img_prompt, seed],
|
| 403 |
+
outputs=img_output
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
video_generate_btn.click(
|
| 407 |
+
process_and_generate_video,
|
| 408 |
+
inputs=[upload_image, video_prompt],
|
| 409 |
+
outputs=video_output
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
randomize_seed.click(
|
| 413 |
+
update_seed,
|
| 414 |
+
outputs=[seed]
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
generate_btn.click(
|
| 418 |
+
update_seed,
|
| 419 |
+
outputs=[seed]
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
if __name__ == "__main__":
|
| 423 |
+
demo.launch(
|
| 424 |
+
server_name="0.0.0.0",
|
| 425 |
+
server_port=7860,
|
| 426 |
+
share=True
|
| 427 |
+
)
|
requirements (9).txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate
|
| 2 |
+
diffusers==0.30.0
|
| 3 |
+
invisible_watermark
|
| 4 |
+
torch
|
| 5 |
+
transformers==4.43.3
|
| 6 |
+
xformers
|
| 7 |
+
sentencepiece
|
| 8 |
+
peft
|
| 9 |
+
gradio
|
| 10 |
+
replicate
|
| 11 |
+
requests
|
| 12 |
+
python-dotenv
|
| 13 |
+
Pillow
|
| 14 |
+
opencv-python-headless
|
| 15 |
+
numpy
|
| 16 |
+
sacremoses
|