Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -203,6 +203,8 @@ class PDFRAGSystem:
|
|
| 203 |
"""๊ด๋ จ ์ฒญํฌ ๊ฒ์"""
|
| 204 |
all_relevant_chunks = []
|
| 205 |
|
|
|
|
|
|
|
| 206 |
if self.embedder and self.embeddings_store:
|
| 207 |
# ์๋ฒ ๋ฉ ๊ธฐ๋ฐ ๊ฒ์
|
| 208 |
query_embedding = self.embedder.encode([query])[0]
|
|
@@ -218,58 +220,68 @@ class PDFRAGSystem:
|
|
| 218 |
sim = np.dot(query_embedding, emb) / (np.linalg.norm(query_embedding) * np.linalg.norm(emb))
|
| 219 |
similarities.append(sim)
|
| 220 |
|
| 221 |
-
# ์์ ์ฒญํฌ ์ ํ
|
| 222 |
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 223 |
|
| 224 |
for idx in top_indices:
|
| 225 |
-
if similarities[idx] > 0.2
|
| 226 |
all_relevant_chunks.append({
|
| 227 |
"content": chunks[idx],
|
| 228 |
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
|
| 229 |
"similarity": similarities[idx]
|
| 230 |
})
|
|
|
|
| 231 |
else:
|
| 232 |
# ํค์๋ ๊ธฐ๋ฐ ๊ฒ์
|
|
|
|
| 233 |
query_keywords = set(query.lower().split())
|
| 234 |
|
| 235 |
for doc_id in doc_ids:
|
| 236 |
if doc_id in self.document_chunks:
|
| 237 |
chunks = self.document_chunks[doc_id]
|
| 238 |
-
for i, chunk in enumerate(chunks
|
| 239 |
chunk_lower = chunk.lower()
|
| 240 |
score = sum(1 for keyword in query_keywords if keyword in chunk_lower)
|
| 241 |
if score > 0:
|
| 242 |
all_relevant_chunks.append({
|
| 243 |
-
"content": chunk[:
|
| 244 |
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
|
| 245 |
"similarity": score / len(query_keywords) if query_keywords else 0
|
| 246 |
})
|
| 247 |
|
| 248 |
# ์ ๋ ฌ ๋ฐ ๋ฐํ
|
| 249 |
all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True)
|
| 250 |
-
|
|
|
|
|
|
|
| 251 |
|
| 252 |
def create_rag_prompt(self, query: str, doc_ids: List[str], top_k: int = 3) -> tuple:
|
| 253 |
"""RAG ํ๋กฌํํธ ์์ฑ - ์ฟผ๋ฆฌ์ ์ปจํ
์คํธ๋ฅผ ๋ถ๋ฆฌํ์ฌ ๋ฐํ"""
|
|
|
|
|
|
|
| 254 |
relevant_chunks = self.search_relevant_chunks(query, doc_ids, top_k)
|
| 255 |
|
| 256 |
if not relevant_chunks:
|
|
|
|
| 257 |
return query, ""
|
| 258 |
|
|
|
|
|
|
|
| 259 |
# ์ปจํ
์คํธ ๊ตฌ์ฑ
|
| 260 |
context_parts = []
|
| 261 |
-
context_parts.append("
|
| 262 |
context_parts.append("=" * 40)
|
| 263 |
|
| 264 |
for i, chunk in enumerate(relevant_chunks, 1):
|
| 265 |
-
context_parts.append(f"\n[
|
| 266 |
-
content = chunk['content'][:
|
| 267 |
context_parts.append(content)
|
|
|
|
| 268 |
|
| 269 |
context_parts.append("\n" + "=" * 40)
|
| 270 |
|
| 271 |
context = "\n".join(context_parts)
|
| 272 |
-
enhanced_query = f"{context}\n\
|
| 273 |
|
| 274 |
return enhanced_query, context
|
| 275 |
|
|
@@ -304,7 +316,12 @@ def format_conversation_history(chat_history):
|
|
| 304 |
@spaces.GPU()
|
| 305 |
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
|
| 306 |
"""Generate response with optional RAG enhancement"""
|
| 307 |
-
global last_context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
# Apply RAG if enabled
|
| 310 |
if rag_enabled and selected_docs:
|
|
@@ -312,9 +329,11 @@ def generate_response(input_data, chat_history, max_new_tokens, system_prompt, t
|
|
| 312 |
enhanced_input, context = rag_system.create_rag_prompt(input_data, doc_ids, top_k_chunks)
|
| 313 |
last_context = context
|
| 314 |
actual_input = enhanced_input
|
|
|
|
| 315 |
else:
|
| 316 |
actual_input = input_data
|
| 317 |
last_context = ""
|
|
|
|
| 318 |
|
| 319 |
# Prepare messages
|
| 320 |
new_message = {"role": "user", "content": actual_input}
|
|
@@ -432,6 +451,9 @@ def update_rag_settings(enable, docs, k):
|
|
| 432 |
selected_docs = docs if docs else []
|
| 433 |
top_k_chunks = k
|
| 434 |
|
|
|
|
|
|
|
|
|
|
| 435 |
status = "โ
Enabled" if enable and docs else "โญ Disabled"
|
| 436 |
status_html = f"<div class='pdf-status pdf-info'>๐ RAG: <strong>{status}</strong></div>"
|
| 437 |
|
|
|
|
| 203 |
"""๊ด๋ จ ์ฒญํฌ ๊ฒ์"""
|
| 204 |
all_relevant_chunks = []
|
| 205 |
|
| 206 |
+
print(f"Searching chunks for query: '{query[:50]}...' in {len(doc_ids)} documents")
|
| 207 |
+
|
| 208 |
if self.embedder and self.embeddings_store:
|
| 209 |
# ์๋ฒ ๋ฉ ๊ธฐ๋ฐ ๊ฒ์
|
| 210 |
query_embedding = self.embedder.encode([query])[0]
|
|
|
|
| 220 |
sim = np.dot(query_embedding, emb) / (np.linalg.norm(query_embedding) * np.linalg.norm(emb))
|
| 221 |
similarities.append(sim)
|
| 222 |
|
| 223 |
+
# ์์ ์ฒญํฌ ์ ํ - ์๊ณ๊ฐ ๋ฎ์ถค
|
| 224 |
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 225 |
|
| 226 |
for idx in top_indices:
|
| 227 |
+
if similarities[idx] > 0.1: # ์๊ณ๊ฐ์ 0.2์์ 0.1๋ก ๋ฎ์ถค
|
| 228 |
all_relevant_chunks.append({
|
| 229 |
"content": chunks[idx],
|
| 230 |
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
|
| 231 |
"similarity": similarities[idx]
|
| 232 |
})
|
| 233 |
+
print(f"Found chunk with similarity: {similarities[idx]:.3f}")
|
| 234 |
else:
|
| 235 |
# ํค์๋ ๊ธฐ๋ฐ ๊ฒ์
|
| 236 |
+
print("Using keyword-based search (embedder not available)")
|
| 237 |
query_keywords = set(query.lower().split())
|
| 238 |
|
| 239 |
for doc_id in doc_ids:
|
| 240 |
if doc_id in self.document_chunks:
|
| 241 |
chunks = self.document_chunks[doc_id]
|
| 242 |
+
for i, chunk in enumerate(chunks): # ๋ชจ๋ ์ฒญํฌ ๊ฒ์
|
| 243 |
chunk_lower = chunk.lower()
|
| 244 |
score = sum(1 for keyword in query_keywords if keyword in chunk_lower)
|
| 245 |
if score > 0:
|
| 246 |
all_relevant_chunks.append({
|
| 247 |
+
"content": chunk[:800], # ๋ ๊ธด ์ฒญํฌ ์ฌ์ฉ
|
| 248 |
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
|
| 249 |
"similarity": score / len(query_keywords) if query_keywords else 0
|
| 250 |
})
|
| 251 |
|
| 252 |
# ์ ๋ ฌ ๋ฐ ๋ฐํ
|
| 253 |
all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True)
|
| 254 |
+
result = all_relevant_chunks[:top_k]
|
| 255 |
+
print(f"Returning {len(result)} chunks")
|
| 256 |
+
return result
|
| 257 |
|
| 258 |
def create_rag_prompt(self, query: str, doc_ids: List[str], top_k: int = 3) -> tuple:
|
| 259 |
"""RAG ํ๋กฌํํธ ์์ฑ - ์ฟผ๋ฆฌ์ ์ปจํ
์คํธ๋ฅผ ๋ถ๋ฆฌํ์ฌ ๋ฐํ"""
|
| 260 |
+
print(f"Creating RAG prompt for query: '{query[:50]}...' with docs: {doc_ids}")
|
| 261 |
+
|
| 262 |
relevant_chunks = self.search_relevant_chunks(query, doc_ids, top_k)
|
| 263 |
|
| 264 |
if not relevant_chunks:
|
| 265 |
+
print("No relevant chunks found")
|
| 266 |
return query, ""
|
| 267 |
|
| 268 |
+
print(f"Found {len(relevant_chunks)} relevant chunks")
|
| 269 |
+
|
| 270 |
# ์ปจํ
์คํธ ๊ตฌ์ฑ
|
| 271 |
context_parts = []
|
| 272 |
+
context_parts.append("Based on the following document context, please answer the question below:")
|
| 273 |
context_parts.append("=" * 40)
|
| 274 |
|
| 275 |
for i, chunk in enumerate(relevant_chunks, 1):
|
| 276 |
+
context_parts.append(f"\n[Document Reference {i} - {chunk['doc_name']}]")
|
| 277 |
+
content = chunk['content'][:500] if len(chunk['content']) > 500 else chunk['content']
|
| 278 |
context_parts.append(content)
|
| 279 |
+
print(f"Added chunk {i} with similarity: {chunk.get('similarity', 0):.3f}")
|
| 280 |
|
| 281 |
context_parts.append("\n" + "=" * 40)
|
| 282 |
|
| 283 |
context = "\n".join(context_parts)
|
| 284 |
+
enhanced_query = f"{context}\n\nQuestion: {query}\n\nAnswer based on the document context provided above:"
|
| 285 |
|
| 286 |
return enhanced_query, context
|
| 287 |
|
|
|
|
| 316 |
@spaces.GPU()
|
| 317 |
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
|
| 318 |
"""Generate response with optional RAG enhancement"""
|
| 319 |
+
global last_context, rag_enabled, selected_docs, top_k_chunks
|
| 320 |
+
|
| 321 |
+
# Debug logging
|
| 322 |
+
print(f"RAG Enabled: {rag_enabled}")
|
| 323 |
+
print(f"Selected Docs: {selected_docs}")
|
| 324 |
+
print(f"Available Docs: {list(rag_system.documents.keys())}")
|
| 325 |
|
| 326 |
# Apply RAG if enabled
|
| 327 |
if rag_enabled and selected_docs:
|
|
|
|
| 329 |
enhanced_input, context = rag_system.create_rag_prompt(input_data, doc_ids, top_k_chunks)
|
| 330 |
last_context = context
|
| 331 |
actual_input = enhanced_input
|
| 332 |
+
print(f"RAG Applied - Original: {len(input_data)} chars, Enhanced: {len(enhanced_input)} chars")
|
| 333 |
else:
|
| 334 |
actual_input = input_data
|
| 335 |
last_context = ""
|
| 336 |
+
print("RAG Not Applied")
|
| 337 |
|
| 338 |
# Prepare messages
|
| 339 |
new_message = {"role": "user", "content": actual_input}
|
|
|
|
| 451 |
selected_docs = docs if docs else []
|
| 452 |
top_k_chunks = k
|
| 453 |
|
| 454 |
+
# Debug logging
|
| 455 |
+
print(f"RAG Settings Updated - Enabled: {rag_enabled}, Docs: {selected_docs}, Top-K: {top_k_chunks}")
|
| 456 |
+
|
| 457 |
status = "โ
Enabled" if enable and docs else "โญ Disabled"
|
| 458 |
status_html = f"<div class='pdf-status pdf-info'>๐ RAG: <strong>{status}</strong></div>"
|
| 459 |
|