Spaces:
Runtime error
Runtime error
| # GPT Chatbot | |
| # Create Conda virtual environment | |
| # conda create --name gpt_chatbot python=3.9.4 | |
| # conda activate gpt_chatbot | |
| # Installation | |
| # pip install streamlit pypdf2 langchain python-dotenv faiss-cpu openai huggingface_hub | |
| # pip install tiktoken | |
| # pip install InstructorEmbedding sentence_transformers | |
| # Could not import tiktoken python package. This is needed in order to for OpenAIEmbeddings. Please install it with `pip install tiktoken`. | |
| # run the app using the following command in anaconda VS Code terminal | |
| # streamlit run app.py | |
| import streamlit as st | |
| from dotenv import load_dotenv | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
| from langchain.vectorstores import FAISS # FAISS instead of PineCone | |
| from langchain.llms import OpenAI | |
| from langchain.llms import HuggingFaceHub | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.chains import ConversationalRetrievalChain | |
| from htmlTemplates import css, bot_template, user_template | |
| def get_pdf_text(pdf_docs): | |
| text ="" | |
| for pdf in pdf_docs: | |
| pdf_reader = PdfReader(pdf) | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| return text | |
| def get_text_chunks(text): | |
| text_splitter = CharacterTextSplitter( | |
| separator="\n", | |
| chunk_size=1000, | |
| chunk_overlap=200, | |
| length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def get_vectorstore(text_chunks): | |
| embeddings = OpenAIEmbeddings() | |
| #embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
| vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
| return vectorstore | |
| def get_conversation_chain(vectorstore): | |
| llm = OpenAI() | |
| #llm = ChatOpenAI() | |
| #llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
| memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
| conversation_chain = ConversationalRetrievalChain.from_llm( | |
| llm=llm, | |
| retriever=vectorstore.as_retriever(), | |
| memory=memory | |
| ) | |
| return conversation_chain | |
| def handle_userinput(user_question): | |
| # st.session_state.conversation contains all the configuration from our vectorstore and memory. | |
| response = st.session_state.conversation({'question': user_question}) | |
| # st.write(response) | |
| st.session_state.chat_history = response['chat_history'] | |
| for i, message in enumerate(st.session_state.chat_history): | |
| if i % 2 == 0: | |
| st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
| else: | |
| st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
| def main(): | |
| load_dotenv() | |
| st.set_page_config(page_title="Chat with multiple law journal PDFs", | |
| page_icon=":books:") | |
| st.write(css, unsafe_allow_html=True) | |
| if "conversation" not in st.session_state: | |
| st.session_state.conversation = None | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = None | |
| st.header("Chat with multiple PDFs :books:") | |
| user_question = st.text_input("Ask a question about your documents:") | |
| if user_question: | |
| handle_userinput(user_question) | |
| #st.write(user_template.replace("{{MSG}}", "hello robot"), unsafe_allow_html=True) | |
| #st.write(bot_template.replace("{{MSG}}", "hello human"), unsafe_allow_html=True) | |
| # "https://i.ibb.co/rdZC7LZ/Photo-logo-1.png" | |
| # "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/bot.jpg" | |
| # "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/CSUN_Matadors_logo.svg.png" | |
| with st.sidebar: | |
| st.subheader("Your documents") | |
| pdf_docs = st.file_uploader( | |
| "Upload your PDfs here and click on 'Process'", accept_multiple_files=True) | |
| if st.button("Process"): | |
| with st.spinner("Processing"): | |
| # --------------- get pdf text ------------------- | |
| raw_text = get_pdf_text(pdf_docs) | |
| #st.write(raw_text) | |
| # ---------- get the text chunks ------------------------- | |
| text_chunks = get_text_chunks(raw_text) | |
| #st.write(text_chunks) | |
| # -------------- create vector store------------------------ | |
| # https://openai.com/pricing --> Embedding Models | |
| # Chose to use the best embedding model - intructor_xl ranked higher than OpenAi's embeddings from huggingface leaderboard | |
| # https://huggingface.co/spaces/mteb/leaderboard | |
| vectorstore = get_vectorstore(text_chunks) | |
| # create conversation chain | |
| st.session_state.conversation = get_conversation_chain(vectorstore) | |
| #conversation = get_conversation_chain(vectorstore) | |
| #st.session_state.conversation | |
| if __name__ == '__main__': | |
| main() |