Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Commit 
							
							·
						
						c300ab5
	
1
								Parent(s):
							
							5590fe1
								
joy_caption
Browse files- caption_models.py +91 -2
- requirements.txt +3 -1
- wpkklhc6/image_adapter.pt +3 -0
- wpkklhc6/wpkklhc6_config.yaml +32 -0
    	
        caption_models.py
    CHANGED
    
    | @@ -1,12 +1,13 @@ | |
| 1 | 
             
            import spaces
         | 
| 2 | 
             
            import torch
         | 
| 3 | 
             
            from PIL import Image
         | 
| 4 | 
            -
            from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration
         | 
| 5 | 
             
            from qwen_vl_utils import process_vision_info
         | 
| 6 | 
             
            import numpy as np
         | 
| 7 | 
             
            import os
         | 
| 8 | 
             
            from datetime import datetime
         | 
| 9 | 
             
            import subprocess
         | 
|  | |
| 10 |  | 
| 11 | 
             
            subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
         | 
| 12 |  | 
| @@ -20,6 +21,45 @@ florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large', | |
| 20 | 
             
            qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval()
         | 
| 21 | 
             
            qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
         | 
| 22 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 23 | 
             
            @spaces.GPU
         | 
| 24 | 
             
            def florence_caption(image):
         | 
| 25 | 
             
                if not isinstance(image, Image.Image):
         | 
| @@ -91,4 +131,53 @@ def qwen_caption(image): | |
| 91 | 
             
                    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
         | 
| 92 | 
             
                )
         | 
| 93 |  | 
| 94 | 
            -
                return output_text[0]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            import spaces
         | 
| 2 | 
             
            import torch
         | 
| 3 | 
             
            from PIL import Image
         | 
| 4 | 
            +
            from transformers import AutoProcessor, AutoModelForCausalLM, Qwen2VLForConditionalGeneration, AutoModel, AutoTokenizer, AutoModelForCausalLM
         | 
| 5 | 
             
            from qwen_vl_utils import process_vision_info
         | 
| 6 | 
             
            import numpy as np
         | 
| 7 | 
             
            import os
         | 
| 8 | 
             
            from datetime import datetime
         | 
| 9 | 
             
            import subprocess
         | 
| 10 | 
            +
            import torch.nn as nn
         | 
| 11 |  | 
| 12 | 
             
            subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
         | 
| 13 |  | 
|  | |
| 21 | 
             
            qwen_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").to(device).eval()
         | 
| 22 | 
             
            qwen_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
         | 
| 23 |  | 
| 24 | 
            +
            # Add these new imports and constants
         | 
| 25 | 
            +
            CLIP_PATH = "google/siglip-so400m-patch14-384"
         | 
| 26 | 
            +
            VLM_PROMPT = "A descriptive caption for this image:\n"
         | 
| 27 | 
            +
            MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
         | 
| 28 | 
            +
            CHECKPOINT_PATH = "wpkklhc6"
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            class ImageAdapter(nn.Module):
         | 
| 31 | 
            +
                def __init__(self, input_features: int, output_features: int):
         | 
| 32 | 
            +
                    super().__init__()
         | 
| 33 | 
            +
                    self.linear1 = nn.Linear(input_features, output_features)
         | 
| 34 | 
            +
                    self.activation = nn.GELU()
         | 
| 35 | 
            +
                    self.linear2 = nn.Linear(output_features, output_features)
         | 
| 36 | 
            +
                
         | 
| 37 | 
            +
                def forward(self, vision_outputs: torch.Tensor):
         | 
| 38 | 
            +
                    x = self.linear1(vision_outputs)
         | 
| 39 | 
            +
                    x = self.activation(x)
         | 
| 40 | 
            +
                    x = self.linear2(x)
         | 
| 41 | 
            +
                    return x
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            # Load CLIP
         | 
| 44 | 
            +
            clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
         | 
| 45 | 
            +
            clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
         | 
| 46 | 
            +
            clip_model.eval()
         | 
| 47 | 
            +
            clip_model.requires_grad_(False)
         | 
| 48 | 
            +
            clip_model.to(device)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            # Tokenizer
         | 
| 51 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            # LLM
         | 
| 54 | 
            +
            text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
         | 
| 55 | 
            +
            text_model.eval()
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            # Image Adapter
         | 
| 58 | 
            +
            image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
         | 
| 59 | 
            +
            image_adapter.load_state_dict(torch.load(f"{CHECKPOINT_PATH}/image_adapter.pt", map_location="cpu"))
         | 
| 60 | 
            +
            image_adapter.eval()
         | 
| 61 | 
            +
            image_adapter.to(device)
         | 
| 62 | 
            +
             | 
| 63 | 
             
            @spaces.GPU
         | 
| 64 | 
             
            def florence_caption(image):
         | 
| 65 | 
             
                if not isinstance(image, Image.Image):
         | 
|  | |
| 131 | 
             
                    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
         | 
| 132 | 
             
                )
         | 
| 133 |  | 
| 134 | 
            +
                return output_text[0]
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            @spaces.GPU
         | 
| 137 | 
            +
            @torch.no_grad()
         | 
| 138 | 
            +
            def joycaption(image):
         | 
| 139 | 
            +
                if not isinstance(image, Image.Image):
         | 
| 140 | 
            +
                    image = Image.fromarray(np.uint8(image))
         | 
| 141 | 
            +
                
         | 
| 142 | 
            +
                # Preprocess image
         | 
| 143 | 
            +
                image = clip_processor(images=image, return_tensors='pt').pixel_values
         | 
| 144 | 
            +
                image = image.to(device)
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                # Tokenize the prompt
         | 
| 147 | 
            +
                prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                # Embed image
         | 
| 150 | 
            +
                with torch.amp.autocast_mode.autocast(device_type='cuda', enabled=True):
         | 
| 151 | 
            +
                    vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
         | 
| 152 | 
            +
                    image_features = vision_outputs.hidden_states[-2]
         | 
| 153 | 
            +
                    embedded_images = image_adapter(image_features)
         | 
| 154 | 
            +
                    embedded_images = embedded_images.to(device)
         | 
| 155 | 
            +
                
         | 
| 156 | 
            +
                # Embed prompt
         | 
| 157 | 
            +
                prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
         | 
| 158 | 
            +
                embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=device, dtype=torch.int64))
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                # Construct prompts
         | 
| 161 | 
            +
                inputs_embeds = torch.cat([
         | 
| 162 | 
            +
                    embedded_bos.expand(embedded_images.shape[0], -1, -1),
         | 
| 163 | 
            +
                    embedded_images.to(dtype=embedded_bos.dtype),
         | 
| 164 | 
            +
                    prompt_embeds.expand(embedded_images.shape[0], -1, -1),
         | 
| 165 | 
            +
                ], dim=1)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                input_ids = torch.cat([
         | 
| 168 | 
            +
                    torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
         | 
| 169 | 
            +
                    torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
         | 
| 170 | 
            +
                    prompt,
         | 
| 171 | 
            +
                ], dim=1).to(device)
         | 
| 172 | 
            +
                attention_mask = torch.ones_like(input_ids)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                # Trim off the prompt
         | 
| 177 | 
            +
                generate_ids = generate_ids[:, input_ids.shape[1]:]
         | 
| 178 | 
            +
                if generate_ids[0][-1] == tokenizer.eos_token_id:
         | 
| 179 | 
            +
                    generate_ids = generate_ids[:, :-1]
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                return caption.strip()
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -10,4 +10,6 @@ git+https://github.com/huggingface/transformers.git | |
| 10 | 
             
            accelerate
         | 
| 11 | 
             
            qwen-vl-utils
         | 
| 12 | 
             
            anthropic
         | 
| 13 | 
            -
            groq
         | 
|  | |
|  | 
|  | |
| 10 | 
             
            accelerate
         | 
| 11 | 
             
            qwen-vl-utils
         | 
| 12 | 
             
            anthropic
         | 
| 13 | 
            +
            groq
         | 
| 14 | 
            +
            sentencepiece
         | 
| 15 | 
            +
            huggingface_hub==0.24.3
         | 
    	
        wpkklhc6/image_adapter.pt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2ebb1d1437bbb3264a6f25a896b25a7c7dd06c570c5de909dc2f19d3a5c5c110
         | 
| 3 | 
            +
            size 86018240
         | 
    	
        wpkklhc6/wpkklhc6_config.yaml
    ADDED
    
    | @@ -0,0 +1,32 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            wandb_project: joy-caption-1
         | 
| 2 | 
            +
            device_batch_size: 2
         | 
| 3 | 
            +
            batch_size: 256
         | 
| 4 | 
            +
            learning_rate: 0.001
         | 
| 5 | 
            +
            warmup_samples: 18000
         | 
| 6 | 
            +
            max_samples: 600000
         | 
| 7 | 
            +
            save_every: 50000
         | 
| 8 | 
            +
            test_every: 50000
         | 
| 9 | 
            +
            use_amp: true
         | 
| 10 | 
            +
            grad_scaler: true
         | 
| 11 | 
            +
            lr_scheduler_type: cosine
         | 
| 12 | 
            +
            min_lr_ratio: 0.0
         | 
| 13 | 
            +
            allow_tf32: true
         | 
| 14 | 
            +
            seed: 42
         | 
| 15 | 
            +
            num_workers: 8
         | 
| 16 | 
            +
            optimizer_type: adamw
         | 
| 17 | 
            +
            adam_beta1: 0.9
         | 
| 18 | 
            +
            adam_beta2: 0.999
         | 
| 19 | 
            +
            adam_eps: 1.0e-08
         | 
| 20 | 
            +
            adam_weight_decay: 0.0
         | 
| 21 | 
            +
            clip_grad_norm: 1.0
         | 
| 22 | 
            +
            dataset: fancyfeast/joy-captioning-20240729a
         | 
| 23 | 
            +
            clip_model: google/siglip-so400m-patch14-384
         | 
| 24 | 
            +
            text_model: meta-llama/Meta-Llama-3.1-8B
         | 
| 25 | 
            +
            resume: null
         | 
| 26 | 
            +
            gradient_checkpointing: false
         | 
| 27 | 
            +
            test_size: 2048
         | 
| 28 | 
            +
            grad_scaler_init: 65536.0
         | 
| 29 | 
            +
            max_caption_length: 257
         | 
| 30 | 
            +
            num_image_tokens: 32
         | 
| 31 | 
            +
            adapter_type: mlp
         | 
| 32 | 
            +
            text_model_dtype: float16
         |