AdGPT / train_model_test.py
goodmodeler's picture
organize files
07a7833
import os
import numpy as np
from datasets import load_dataset
from PIL import Image, ImageOps, ImageFilter
from tqdm import tqdm
import random
import requests
import io
import time
def download_image(url, timeout=10, retries=2):
"""Download image from URL with retry mechanism"""
for attempt in range(retries):
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
response = requests.get(url, timeout=timeout, headers=headers)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
return image
else:
return None
except Exception as e:
if attempt == retries - 1: # Last attempt
print(f"Failed to download {url}: {e}")
return None
time.sleep(0.5) # Brief pause before retry
return None
def preprocess_image(image, target_size=512, quality_threshold=0.7):
"""Preprocess image with various enhancements"""
if image is None:
return None
try:
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Filter out low quality images
width, height = image.size
if min(width, height) < target_size * quality_threshold:
return None
# Center crop to square if not already
if width != height:
size = min(width, height)
left = (width - size) // 2
top = (height - size) // 2
image = image.crop((left, top, left + size, top + size))
# Resize to target size
image = image.resize((target_size, target_size), Image.Resampling.LANCZOS)
# Enhance image quality
# Slightly sharpen
image = image.filter(ImageFilter.UnsharpMask(radius=0.5, percent=120, threshold=3))
# Auto-adjust levels
image = ImageOps.autocontrast(image, cutoff=1)
return image
except Exception as e:
print(f"Error preprocessing image: {e}")
return None
def clean_prompt(prompt):
"""Clean and normalize prompts"""
if not prompt:
return None
# Remove excessive whitespace
prompt = ' '.join(prompt.split())
# Remove common artifacts
prompt = prompt.replace(' ', ' ')
prompt = prompt.strip(' .,;:')
# Filter out very short or very long prompts
words = prompt.split()
if len(words) < 3 or len(words) > 50:
return None
return prompt
def prepare_dreambooth_data():
# Load dataset
print("Loading LAION dataset...")
dataset = load_dataset("laion/laion2B-en-aesthetic", split="train", streaming=True)
# Create directory structure
data_dir = "./laion_dataset"
os.makedirs(data_dir, exist_ok=True)
valid_samples = 0
processed_count = 0
max_samples = 1000 # Limit total samples to process
print(f"Starting to process up to {max_samples} samples...")
# Process images with preprocessing
for idx, sample in enumerate(tqdm(dataset, desc="Processing LAION samples")):
if processed_count >= max_samples:
break
processed_count += 1
try:
# Get URL and text from LAION format
image_url = sample.get('URL', '')
text_prompt = sample.get('TEXT', '')
if not image_url or not text_prompt:
continue
# Clean prompt first
prompt = clean_prompt(text_prompt)
if prompt is None:
continue
# Download image from URL
print(f"Downloading image {valid_samples + 1}: {image_url[:50]}...")
image = download_image(image_url)
if image is None:
continue
# Preprocess downloaded image
processed_image = preprocess_image(image)
if processed_image is None:
continue
# Save processed image
image_path = os.path.join(data_dir, f"image_{valid_samples:04d}.jpg")
processed_image.save(image_path, "JPEG", quality=95, optimize=True)
# Save cleaned caption
caption_path = os.path.join(data_dir, f"image_{valid_samples:04d}.txt")
with open(caption_path, 'w', encoding='utf-8') as f:
f.write(prompt)
valid_samples += 1
# Optional: Add metadata file
metadata_path = os.path.join(data_dir, f"image_{valid_samples-1:04d}_meta.txt")
with open(metadata_path, 'w', encoding='utf-8') as f:
f.write(f"URL: {image_url}\n")
f.write(f"Aesthetic: {sample.get('aesthetic', 'N/A')}\n")
f.write(f"Width: {sample.get('WIDTH', 'N/A')}\n")
f.write(f"Height: {sample.get('HEIGHT', 'N/A')}\n")
# Stop if we have enough samples
if valid_samples >= 100: # Adjust this number as needed
break
except Exception as e:
print(f"Error processing sample {idx}: {e}")
continue
print(f"Processed {processed_count} samples, saved {valid_samples} valid images to {data_dir}")
return data_dir
def create_demo_dataset():
"""Create demo dataset as last resort"""
print("Creating demo dataset...")
data_dir = "./demo_dataset"
os.makedirs(data_dir, exist_ok=True)
demo_prompts = [
"a beautiful landscape with mountains",
"portrait of a person with detailed features",
"abstract colorful digital artwork",
"modern architecture building design",
"natural forest scene with trees",
"urban cityscape at sunset",
"artistic oil painting style",
"vintage photography aesthetic",
"minimalist geometric composition",
"vibrant surreal art piece"
]
for idx, prompt in enumerate(demo_prompts):
# Create gradient background
color1 = (random.randint(50, 200), random.randint(50, 200), random.randint(50, 200))
color2 = (random.randint(100, 255), random.randint(100, 255), random.randint(100, 255))
image = Image.new('RGB', (512, 512), color1)
# Save files
image_path = os.path.join(data_dir, f"image_{idx:04d}.jpg")
image.save(image_path, "JPEG", quality=95)
caption_path = os.path.join(data_dir, f"image_{idx:04d}.txt")
with open(caption_path, 'w', encoding='utf-8') as f:
f.write(prompt)
print(f"Created {len(demo_prompts)} demo samples")
return data_dir
# Main execution with fallback
def main():
data_dir = prepare_dreambooth_data()
# Generate training command
training_command = f"""
accelerate launch \\
--deepspeed_config_file ds_config.json \\
diffusers/examples/dreambooth/train_dreambooth.py \\
--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \\
--instance_data_dir="{data_dir}" \\
--instance_prompt="a high quality image" \\
--output_dir="./laion-model" \\
--resolution=512 \\
--train_batch_size=1 \\
--gradient_accumulation_steps=1 \\
--gradient_checkpointing \\
--learning_rate=5e-6 \\
--lr_scheduler="constant" \\
--lr_warmup_steps=0 \\
--max_train_steps=400 \\
--mixed_precision="fp16" \\
--checkpointing_steps=100 \\
--checkpoints_total_limit=1 \\
--report_to="tensorboard" \\
--logging_dir="./laion-model/logs"
"""
print(f"\n✅ Dataset prepared in: {data_dir}")
print("🚀 Run this command to train:")
print(training_command)
if __name__ == "__main__":
main()