Spaces:
Sleeping
Sleeping
Commit
·
ee07cd3
1
Parent(s):
134ce68
ADD: fix train_model
Browse files- train_model.py +172 -56
train_model.py
CHANGED
|
@@ -4,41 +4,75 @@ from datasets import load_dataset
|
|
| 4 |
from PIL import Image, ImageOps, ImageFilter
|
| 5 |
from tqdm import tqdm
|
| 6 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def preprocess_image(image, target_size=512, quality_threshold=0.7):
|
| 9 |
"""Preprocess image with various enhancements"""
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
return None
|
| 18 |
-
|
| 19 |
-
# Center crop to square if not already
|
| 20 |
-
if width != height:
|
| 21 |
-
size = min(width, height)
|
| 22 |
-
left = (width - size) // 2
|
| 23 |
-
top = (height - size) // 2
|
| 24 |
-
image = image.crop((left, top, left + size, top + size))
|
| 25 |
-
|
| 26 |
-
# Resize to target size
|
| 27 |
-
image = image.resize((target_size, target_size), Image.Resampling.LANCZOS)
|
| 28 |
-
|
| 29 |
-
# Enhance image quality
|
| 30 |
-
# Slightly sharpen
|
| 31 |
-
image = image.filter(ImageFilter.UnsharpMask(radius=0.5, percent=120, threshold=3))
|
| 32 |
-
|
| 33 |
-
# Auto-adjust levels
|
| 34 |
-
image = ImageOps.autocontrast(image, cutoff=1)
|
| 35 |
-
|
| 36 |
-
return image
|
| 37 |
|
| 38 |
def clean_prompt(prompt):
|
| 39 |
"""Clean and normalize prompts"""
|
| 40 |
if not prompt:
|
| 41 |
-
return
|
| 42 |
|
| 43 |
# Remove excessive whitespace
|
| 44 |
prompt = ' '.join(prompt.split())
|
|
@@ -56,53 +90,131 @@ def clean_prompt(prompt):
|
|
| 56 |
|
| 57 |
def prepare_dreambooth_data():
|
| 58 |
# Load dataset
|
| 59 |
-
|
| 60 |
-
|
| 61 |
|
| 62 |
# Create directory structure
|
| 63 |
-
data_dir = "./
|
| 64 |
os.makedirs(data_dir, exist_ok=True)
|
| 65 |
|
| 66 |
valid_samples = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# Process images with preprocessing
|
| 69 |
-
for idx, sample in enumerate(tqdm(
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
if image is None:
|
| 73 |
-
continue
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
|
| 81 |
-
image_path = os.path.join(data_dir, f"image_{valid_samples:04d}.jpg")
|
| 82 |
-
image.save(image_path, "JPEG", quality=95, optimize=True)
|
| 83 |
|
| 84 |
-
# Save
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
| 86 |
with open(caption_path, 'w', encoding='utf-8') as f:
|
| 87 |
f.write(prompt)
|
| 88 |
-
|
| 89 |
-
valid_samples += 1
|
| 90 |
|
| 91 |
-
print(f"
|
| 92 |
return data_dir
|
| 93 |
|
| 94 |
-
#
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
| 99 |
accelerate launch \\
|
| 100 |
--deepspeed_config_file ds_config.json \\
|
| 101 |
diffusers/examples/dreambooth/train_dreambooth.py \\
|
| 102 |
--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \\
|
| 103 |
--instance_data_dir="{data_dir}" \\
|
| 104 |
-
--instance_prompt="a
|
| 105 |
-
--output_dir="./
|
| 106 |
--resolution=512 \\
|
| 107 |
--train_batch_size=1 \\
|
| 108 |
--gradient_accumulation_steps=1 \\
|
|
@@ -115,8 +227,12 @@ accelerate launch \\
|
|
| 115 |
--checkpointing_steps=100 \\
|
| 116 |
--checkpoints_total_limit=1 \\
|
| 117 |
--report_to="tensorboard" \\
|
| 118 |
-
--logging_dir="./
|
| 119 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
|
|
|
| 4 |
from PIL import Image, ImageOps, ImageFilter
|
| 5 |
from tqdm import tqdm
|
| 6 |
import random
|
| 7 |
+
import requests
|
| 8 |
+
import io
|
| 9 |
+
import time
|
| 10 |
+
|
| 11 |
+
def download_image(url, timeout=10, retries=2):
|
| 12 |
+
"""Download image from URL with retry mechanism"""
|
| 13 |
+
for attempt in range(retries):
|
| 14 |
+
try:
|
| 15 |
+
headers = {
|
| 16 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
| 17 |
+
}
|
| 18 |
+
response = requests.get(url, timeout=timeout, headers=headers)
|
| 19 |
+
|
| 20 |
+
if response.status_code == 200:
|
| 21 |
+
image = Image.open(io.BytesIO(response.content))
|
| 22 |
+
return image
|
| 23 |
+
else:
|
| 24 |
+
return None
|
| 25 |
+
|
| 26 |
+
except Exception as e:
|
| 27 |
+
if attempt == retries - 1: # Last attempt
|
| 28 |
+
print(f"Failed to download {url}: {e}")
|
| 29 |
+
return None
|
| 30 |
+
time.sleep(0.5) # Brief pause before retry
|
| 31 |
+
|
| 32 |
+
return None
|
| 33 |
|
| 34 |
def preprocess_image(image, target_size=512, quality_threshold=0.7):
|
| 35 |
"""Preprocess image with various enhancements"""
|
| 36 |
+
if image is None:
|
| 37 |
+
return None
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
# Convert to RGB if needed
|
| 41 |
+
if image.mode != 'RGB':
|
| 42 |
+
image = image.convert('RGB')
|
| 43 |
+
|
| 44 |
+
# Filter out low quality images
|
| 45 |
+
width, height = image.size
|
| 46 |
+
if min(width, height) < target_size * quality_threshold:
|
| 47 |
+
return None
|
| 48 |
+
|
| 49 |
+
# Center crop to square if not already
|
| 50 |
+
if width != height:
|
| 51 |
+
size = min(width, height)
|
| 52 |
+
left = (width - size) // 2
|
| 53 |
+
top = (height - size) // 2
|
| 54 |
+
image = image.crop((left, top, left + size, top + size))
|
| 55 |
+
|
| 56 |
+
# Resize to target size
|
| 57 |
+
image = image.resize((target_size, target_size), Image.Resampling.LANCZOS)
|
| 58 |
+
|
| 59 |
+
# Enhance image quality
|
| 60 |
+
# Slightly sharpen
|
| 61 |
+
image = image.filter(ImageFilter.UnsharpMask(radius=0.5, percent=120, threshold=3))
|
| 62 |
+
|
| 63 |
+
# Auto-adjust levels
|
| 64 |
+
image = ImageOps.autocontrast(image, cutoff=1)
|
| 65 |
+
|
| 66 |
+
return image
|
| 67 |
+
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Error preprocessing image: {e}")
|
| 70 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
def clean_prompt(prompt):
|
| 73 |
"""Clean and normalize prompts"""
|
| 74 |
if not prompt:
|
| 75 |
+
return None
|
| 76 |
|
| 77 |
# Remove excessive whitespace
|
| 78 |
prompt = ' '.join(prompt.split())
|
|
|
|
| 90 |
|
| 91 |
def prepare_dreambooth_data():
|
| 92 |
# Load dataset
|
| 93 |
+
print("Loading LAION dataset...")
|
| 94 |
+
dataset = load_dataset("laion/laion2B-en-aesthetic", split="train", streaming=True)
|
| 95 |
|
| 96 |
# Create directory structure
|
| 97 |
+
data_dir = "./laion_dataset"
|
| 98 |
os.makedirs(data_dir, exist_ok=True)
|
| 99 |
|
| 100 |
valid_samples = 0
|
| 101 |
+
processed_count = 0
|
| 102 |
+
max_samples = 1000 # Limit total samples to process
|
| 103 |
+
|
| 104 |
+
print(f"Starting to process up to {max_samples} samples...")
|
| 105 |
|
| 106 |
# Process images with preprocessing
|
| 107 |
+
for idx, sample in enumerate(tqdm(dataset, desc="Processing LAION samples")):
|
| 108 |
+
if processed_count >= max_samples:
|
| 109 |
+
break
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
processed_count += 1
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
# Get URL and text from LAION format
|
| 115 |
+
image_url = sample.get('URL', '')
|
| 116 |
+
text_prompt = sample.get('TEXT', '')
|
| 117 |
+
|
| 118 |
+
if not image_url or not text_prompt:
|
| 119 |
+
continue
|
| 120 |
+
|
| 121 |
+
# Clean prompt first
|
| 122 |
+
prompt = clean_prompt(text_prompt)
|
| 123 |
+
if prompt is None:
|
| 124 |
+
continue
|
| 125 |
+
|
| 126 |
+
# Download image from URL
|
| 127 |
+
print(f"Downloading image {valid_samples + 1}: {image_url[:50]}...")
|
| 128 |
+
image = download_image(image_url)
|
| 129 |
+
if image is None:
|
| 130 |
+
continue
|
| 131 |
+
|
| 132 |
+
# Preprocess downloaded image
|
| 133 |
+
processed_image = preprocess_image(image)
|
| 134 |
+
if processed_image is None:
|
| 135 |
+
continue
|
| 136 |
+
|
| 137 |
+
# Save processed image
|
| 138 |
+
image_path = os.path.join(data_dir, f"image_{valid_samples:04d}.jpg")
|
| 139 |
+
processed_image.save(image_path, "JPEG", quality=95, optimize=True)
|
| 140 |
+
|
| 141 |
+
# Save cleaned caption
|
| 142 |
+
caption_path = os.path.join(data_dir, f"image_{valid_samples:04d}.txt")
|
| 143 |
+
with open(caption_path, 'w', encoding='utf-8') as f:
|
| 144 |
+
f.write(prompt)
|
| 145 |
+
|
| 146 |
+
valid_samples += 1
|
| 147 |
+
|
| 148 |
+
# Optional: Add metadata file
|
| 149 |
+
metadata_path = os.path.join(data_dir, f"image_{valid_samples-1:04d}_meta.txt")
|
| 150 |
+
with open(metadata_path, 'w', encoding='utf-8') as f:
|
| 151 |
+
f.write(f"URL: {image_url}\n")
|
| 152 |
+
f.write(f"Aesthetic: {sample.get('aesthetic', 'N/A')}\n")
|
| 153 |
+
f.write(f"Width: {sample.get('WIDTH', 'N/A')}\n")
|
| 154 |
+
f.write(f"Height: {sample.get('HEIGHT', 'N/A')}\n")
|
| 155 |
+
|
| 156 |
+
# Stop if we have enough samples
|
| 157 |
+
if valid_samples >= 100: # Adjust this number as needed
|
| 158 |
+
break
|
| 159 |
+
|
| 160 |
+
except Exception as e:
|
| 161 |
+
print(f"Error processing sample {idx}: {e}")
|
| 162 |
continue
|
| 163 |
+
|
| 164 |
+
print(f"Processed {processed_count} samples, saved {valid_samples} valid images to {data_dir}")
|
| 165 |
+
return data_dir
|
| 166 |
+
|
| 167 |
+
def create_demo_dataset():
|
| 168 |
+
"""Create demo dataset as last resort"""
|
| 169 |
+
print("Creating demo dataset...")
|
| 170 |
+
|
| 171 |
+
data_dir = "./demo_dataset"
|
| 172 |
+
os.makedirs(data_dir, exist_ok=True)
|
| 173 |
+
|
| 174 |
+
demo_prompts = [
|
| 175 |
+
"a beautiful landscape with mountains",
|
| 176 |
+
"portrait of a person with detailed features",
|
| 177 |
+
"abstract colorful digital artwork",
|
| 178 |
+
"modern architecture building design",
|
| 179 |
+
"natural forest scene with trees",
|
| 180 |
+
"urban cityscape at sunset",
|
| 181 |
+
"artistic oil painting style",
|
| 182 |
+
"vintage photography aesthetic",
|
| 183 |
+
"minimalist geometric composition",
|
| 184 |
+
"vibrant surreal art piece"
|
| 185 |
+
]
|
| 186 |
+
|
| 187 |
+
for idx, prompt in enumerate(demo_prompts):
|
| 188 |
+
# Create gradient background
|
| 189 |
+
color1 = (random.randint(50, 200), random.randint(50, 200), random.randint(50, 200))
|
| 190 |
+
color2 = (random.randint(100, 255), random.randint(100, 255), random.randint(100, 255))
|
| 191 |
|
| 192 |
+
image = Image.new('RGB', (512, 512), color1)
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
# Save files
|
| 195 |
+
image_path = os.path.join(data_dir, f"image_{idx:04d}.jpg")
|
| 196 |
+
image.save(image_path, "JPEG", quality=95)
|
| 197 |
+
|
| 198 |
+
caption_path = os.path.join(data_dir, f"image_{idx:04d}.txt")
|
| 199 |
with open(caption_path, 'w', encoding='utf-8') as f:
|
| 200 |
f.write(prompt)
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
print(f"Created {len(demo_prompts)} demo samples")
|
| 203 |
return data_dir
|
| 204 |
|
| 205 |
+
# Main execution with fallback
|
| 206 |
+
def main():
|
| 207 |
+
data_dir = prepare_dreambooth_data()
|
| 208 |
+
|
| 209 |
+
# Generate training command
|
| 210 |
+
training_command = f"""
|
| 211 |
accelerate launch \\
|
| 212 |
--deepspeed_config_file ds_config.json \\
|
| 213 |
diffusers/examples/dreambooth/train_dreambooth.py \\
|
| 214 |
--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \\
|
| 215 |
--instance_data_dir="{data_dir}" \\
|
| 216 |
+
--instance_prompt="a high quality image" \\
|
| 217 |
+
--output_dir="./laion-model" \\
|
| 218 |
--resolution=512 \\
|
| 219 |
--train_batch_size=1 \\
|
| 220 |
--gradient_accumulation_steps=1 \\
|
|
|
|
| 227 |
--checkpointing_steps=100 \\
|
| 228 |
--checkpoints_total_limit=1 \\
|
| 229 |
--report_to="tensorboard" \\
|
| 230 |
+
--logging_dir="./laion-model/logs"
|
| 231 |
"""
|
| 232 |
+
|
| 233 |
+
print(f"\n✅ Dataset prepared in: {data_dir}")
|
| 234 |
+
print("🚀 Run this command to train:")
|
| 235 |
+
print(training_command)
|
| 236 |
|
| 237 |
+
if __name__ == "__main__":
|
| 238 |
+
main()
|