Spaces:
				
			
			
	
			
			
					
		Running
		
			on 
			
			CPU Upgrade
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
			on 
			
			CPU Upgrade
	File size: 2,744 Bytes
			
			| a6bdbe4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | # Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# MedGemma endpoint
import requests
from auth import create_credentials, get_access_token_refresh_if_needed
import os
from cache import cache
_endpoint_url = os.environ.get('GCP_MEDGEMMA_ENDPOINT')
# Create credentials
secret_key_json = os.environ.get('GCP_MEDGEMMA_SERVICE_ACCOUNT_KEY')
medgemma_credentials = create_credentials(secret_key_json)
# https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.endpoints.chat/completions
@cache.memoize()
def medgemma_get_text_response(
    messages: list,
    temperature: float = 0.1,
    max_tokens: int = 4096,
    stream: bool = False,
    top_p: float | None = None,
    seed: int | None = None,
    stop: list[str] | str | None = None,
    frequency_penalty: float | None = None,
    presence_penalty: float | None = None,
    model: str="tgi"
):
    """
    Makes a chat completion request to the configured LLM API (OpenAI-compatible).
    """
    headers = {
        "Authorization": f"Bearer {get_access_token_refresh_if_needed(medgemma_credentials)}",
        "Content-Type": "application/json",
    }
    # Based on the openai format
    payload = {
                "messages": messages,
                "max_tokens": max_tokens
              }
    if temperature is not None: payload["temperature"] = temperature
    if top_p is not None: payload["top_p"] = top_p
    if seed is not None: payload["seed"] = seed
    if stop is not None: payload["stop"] = stop
    if frequency_penalty is not None: payload["frequency_penalty"] = frequency_penalty
    if presence_penalty is not None: payload["presence_penalty"] = presence_penalty
    response = requests.post(_endpoint_url, headers=headers, json=payload, stream=stream, timeout=60)
    try:
        response.raise_for_status()
        return response.json()["choices"][0]["message"]["content"]
    except requests.exceptions.JSONDecodeError:
        # Log the problematic response for easier debugging in the future.
        print(f"Error: Failed to decode JSON from MedGemma. Status: {response.status_code}, Response: {response.text}")
        # Re-raise the exception so the caller knows something went wrong.
        raise
 | 
 
			
