Spaces:
Running
on
L40S
Running
on
L40S
Commit
·
ad5bf1a
1
Parent(s):
f5e3203
Adding requirements.txt
Browse files- app.py +3 -62
- requirements.txt +3 -0
app.py
CHANGED
|
@@ -2,85 +2,26 @@ from collections.abc import Sequence
|
|
| 2 |
import random
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
-
import immutabledict
|
| 6 |
-
import spaces
|
| 7 |
-
import torch
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
#### Version 1: Baseline
|
| 11 |
-
# Step 1: Select and load your model
|
| 12 |
-
# Step 2: Load the test dataset (4-5 examples)
|
| 13 |
-
# Step 3: Run generation with and wihtout watermarking, display the outputs
|
| 14 |
-
# Step 4: User clicks the reveal button to see the watermarked vs not gens
|
| 15 |
-
|
| 16 |
-
#### Version 2: Gamification
|
| 17 |
-
# Stesp 1-3 the same
|
| 18 |
-
# Step 4: User marks specific generations as watermarked
|
| 19 |
-
# Step 5: User clicks the reveal button to see the watermarked vs not gens
|
| 20 |
|
| 21 |
# If the watewrmark is not detected, consider the use case. Could be because of
|
| 22 |
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
|
| 23 |
# be another
|
| 24 |
|
| 25 |
-
|
| 26 |
|
| 27 |
-
|
| 28 |
'prompt 1',
|
| 29 |
'prompt 2',
|
| 30 |
'prompt 3',
|
| 31 |
'prompt 4',
|
| 32 |
)
|
| 33 |
|
| 34 |
-
WATERMARKING_CONFIG = immutabledict.immutabledict({
|
| 35 |
-
"ngram_len": 5,
|
| 36 |
-
"keys": [
|
| 37 |
-
654,
|
| 38 |
-
400,
|
| 39 |
-
836,
|
| 40 |
-
123,
|
| 41 |
-
340,
|
| 42 |
-
443,
|
| 43 |
-
597,
|
| 44 |
-
160,
|
| 45 |
-
57,
|
| 46 |
-
29,
|
| 47 |
-
590,
|
| 48 |
-
639,
|
| 49 |
-
13,
|
| 50 |
-
715,
|
| 51 |
-
468,
|
| 52 |
-
990,
|
| 53 |
-
966,
|
| 54 |
-
226,
|
| 55 |
-
324,
|
| 56 |
-
585,
|
| 57 |
-
118,
|
| 58 |
-
504,
|
| 59 |
-
421,
|
| 60 |
-
521,
|
| 61 |
-
129,
|
| 62 |
-
669,
|
| 63 |
-
732,
|
| 64 |
-
225,
|
| 65 |
-
90,
|
| 66 |
-
960,
|
| 67 |
-
],
|
| 68 |
-
"sampling_table_size": 2**16,
|
| 69 |
-
"sampling_table_seed": 0,
|
| 70 |
-
"context_history_size": 1024,
|
| 71 |
-
"device": (
|
| 72 |
-
torch.device("cuda:0")
|
| 73 |
-
if torch.cuda.is_available()
|
| 74 |
-
else torch.device("cpu")
|
| 75 |
-
),
|
| 76 |
-
})
|
| 77 |
-
|
| 78 |
_CORRECT_ANSWERS: dict[str, bool] = {}
|
| 79 |
|
| 80 |
with gr.Blocks() as demo:
|
| 81 |
prompt_inputs = [
|
| 82 |
gr.Textbox(value=prompt, lines=4, label='Prompt')
|
| 83 |
-
for prompt in
|
| 84 |
]
|
| 85 |
generate_btn = gr.Button('Generate')
|
| 86 |
|
|
|
|
| 2 |
import random
|
| 3 |
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# If the watewrmark is not detected, consider the use case. Could be because of
|
| 7 |
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
|
| 8 |
# be another
|
| 9 |
|
| 10 |
+
_GEMMA_2B = 'google/gemma-2b'
|
| 11 |
|
| 12 |
+
_PROMPTS: tuple[str] = (
|
| 13 |
'prompt 1',
|
| 14 |
'prompt 2',
|
| 15 |
'prompt 3',
|
| 16 |
'prompt 4',
|
| 17 |
)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
_CORRECT_ANSWERS: dict[str, bool] = {}
|
| 20 |
|
| 21 |
with gr.Blocks() as demo:
|
| 22 |
prompt_inputs = [
|
| 23 |
gr.Textbox(value=prompt, lines=4, label='Prompt')
|
| 24 |
+
for prompt in _PROMPTS
|
| 25 |
]
|
| 26 |
generate_btn = gr.Button('Generate')
|
| 27 |
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
spaces
|
| 3 |
+
transformers @ git+https://github.com/sumedhghaisas2/transformers_private@synthid_text
|