Spaces:
Runtime error
Runtime error
| """ | |
| Apply the LoRA weights on top of a base model. | |
| Usage: | |
| python api/utils/apply_lora.py --base ~/model_weights/llama-7b --target ~/model_weights/baize-7b --lora project-baize/baize-lora-7B | |
| """ | |
| import argparse | |
| import torch | |
| from peft import PeftModel | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| def apply_lora(base_model_path, target_model_path, lora_path): | |
| print(f"Loading the base model from {base_model_path}") | |
| base = AutoModelForCausalLM.from_pretrained( | |
| base_model_path, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True, | |
| ) | |
| base_tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False, trust_remote_code=True) | |
| print(f"Loading the LoRA adapter from {lora_path}") | |
| lora_model = PeftModel.from_pretrained(base, lora_path) | |
| print("Applying the LoRA") | |
| model = lora_model.merge_and_unload() | |
| print(f"Saving the target model to {target_model_path}") | |
| model.save_pretrained(target_model_path) | |
| base_tokenizer.save_pretrained(target_model_path) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--base-model-path", type=str, required=True) | |
| parser.add_argument("--target-model-path", type=str, required=True) | |
| parser.add_argument("--lora-path", type=str, required=True) | |
| args = parser.parse_args() | |
| apply_lora(args.base_model_path, args.target_model_path, args.lora_path) | |