Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| import random | |
| import numpy as np | |
| import torch | |
| import torch.backends.cudnn as cudnn | |
| import gradio as gr | |
| import argparse | |
| import torch | |
| from llava.constants import ( | |
| IMAGE_TOKEN_INDEX, | |
| DEFAULT_IMAGE_TOKEN, | |
| DEFAULT_IM_START_TOKEN, | |
| DEFAULT_IM_END_TOKEN, | |
| IMAGE_PLACEHOLDER, | |
| ) | |
| from llava.conversation import conv_templates, SeparatorStyle | |
| from llava.model.builder import load_pretrained_model | |
| from llava.utils import disable_torch_init | |
| from llava.mm_utils import ( | |
| process_images, | |
| tokenizer_image_token, | |
| get_model_name_from_path, | |
| ) | |
| from PIL import Image | |
| from huggingface_hub import snapshot_download | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| import re | |
| from llava.chat import Chat, conv_llava_v1 | |
| # imports modules for registration | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Demo") | |
| parser.add_argument("--model-path", type=str, default="gordonhu/MQT-LLaVA-7b") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| # parser.add_argument("--image-file", type=str, required=True) | |
| # parser.add_argument("--query", type=str, required=True) | |
| parser.add_argument("--conv-mode", type=str, default='llava_v1') | |
| parser.add_argument("--sep", type=str, default=",") | |
| parser.add_argument("--temperature", type=float, default=0) | |
| parser.add_argument("--top_p", type=float, default=None) | |
| parser.add_argument("--num_beams", type=int, default=1) | |
| parser.add_argument("--max_new_tokens", type=int, default=512) | |
| parser.add_argument("--num-visual-tokens", type=int, default=256) | |
| parser.add_argument("--gpu-id", type=int, default=0) | |
| args = parser.parse_args() | |
| return args | |
| # ======================================== | |
| # Model Initialization | |
| # ======================================== | |
| print('Initializing Chat') | |
| args = parse_args() | |
| if torch.cuda.is_available(): | |
| device='cuda:{}'.format(args.gpu_id) | |
| else: | |
| device=torch.device('cpu') | |
| disable_torch_init() | |
| snapshot_download(repo_id="gordonhu/MQT-LLaVA-7b") | |
| model_name = get_model_name_from_path(args.model_path) | |
| tokenizer, model, image_processor, context_len = load_pretrained_model( | |
| args.model_path, args.model_base, model_name, device_map=device, device=device | |
| ) | |
| # vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train | |
| # vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
| chat = Chat(model, tokenizer, image_processor, args, device=device) | |
| print('Initialization Finished') | |
| # ======================================== | |
| # Gradio Setting | |
| # ======================================== | |
| def gradio_reset(chat_state, img_list): | |
| if chat_state is not None: | |
| chat_state.messages = [] | |
| if img_list is not None: | |
| img_list = [] | |
| return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list | |
| def upload_img(gr_img, text_input, chat_state): | |
| if gr_img is None: | |
| return None, None, gr.update(interactive=True), chat_state, None | |
| chat_state = conv_llava_v1.copy() #CONV_VISION.copy() | |
| img_list = [] | |
| llm_message = chat.upload_img(gr_img, chat_state, img_list) | |
| return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list | |
| def gradio_ask(user_message, chatbot, chat_state): | |
| if len(user_message) == 0: | |
| return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state | |
| chat.ask(user_message, chat_state) | |
| chatbot = chatbot + [[user_message, None]] | |
| return '', chatbot, chat_state | |
| def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature, num_visual_tokens): | |
| llm_message = chat.answer(conv=chat_state, | |
| img_list=img_list, | |
| num_beams=num_beams, | |
| temperature=temperature, | |
| num_visual_tokens=num_visual_tokens, | |
| ) #[0] | |
| chatbot[-1][1] = llm_message[0] | |
| return chatbot, chat_state, img_list | |
| title = """<h1 align="center">Demo of MQT-LLaVA</h1>""" | |
| description = """<h3>This is the demo of MQT-LLaVA. Upload your images and start chatting! <br> To use | |
| example questions, click example image, hit upload & start chat, and press enter on your keyboard in the chatbox. | |
| <br> Due to limited memory constraint, we only support single turn conversation. To ask multiple questions, hit Restart and upload your image! </h3>""" | |
| article = """<p><a href='https://gordonhu608.github.io/mqtllava/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/gordonhu608/MQT-LLaVA'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://arxiv.org/abs/2405.19315'><img src='https://img.shields.io/badge/Paper-ArXiv-red'></a></p> | |
| """ | |
| #TODO show examples below | |
| with gr.Blocks() as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| gr.Markdown(article) | |
| with gr.Row(): | |
| with gr.Column(scale=0.5): | |
| image = gr.Image(type="pil") | |
| upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary") | |
| clear = gr.Button("Restart 🔄") | |
| num_visual_tokens = gr.Slider( | |
| minimum=1, | |
| maximum=256, | |
| value=256, | |
| step=1, | |
| interactive=True, | |
| label="Number of visual tokens", | |
| ) | |
| temperature = gr.Slider( | |
| minimum=0.1, | |
| maximum=2.0, | |
| value=1.0, | |
| step=0.1, | |
| interactive=True, | |
| label="Temperature", | |
| ) | |
| num_beams = gr.Slider( | |
| minimum=1, | |
| maximum=10, | |
| value=5, | |
| step=1, | |
| interactive=True, | |
| label="beam search numbers", | |
| ) | |
| with gr.Column(): | |
| chat_state = gr.State() | |
| img_list = gr.State() | |
| chatbot = gr.Chatbot(label='MQT-LLaVA') | |
| text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False) | |
| gr.Examples(examples=[ | |
| [f"images/extreme_ironing.jpg", "What is unusual about this image?"], | |
| [f"images/waterview.jpg", "What are the things I should be cautious about when I visit here?"], | |
| ], inputs=[image, text_input]) | |
| upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list]) | |
| text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( | |
| gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature, num_visual_tokens], [chatbot, chat_state, img_list] | |
| ) | |
| clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False) | |
| demo.launch() |