Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from utils import ( | |
| device, | |
| jina_tokenizer, | |
| jina_model, | |
| embeddings_predict_relevance, | |
| stsb_model, | |
| stsb_tokenizer, | |
| ms_model, | |
| ms_tokenizer, | |
| cross_encoder_predict_relevance | |
| ) | |
| def predict(system_prompt, user_prompt): | |
| predicted_label_jina, probabilities_jina = embeddings_predict_relevance(system_prompt, user_prompt, jina_model, jina_tokenizer, device) | |
| predicted_label_stsb, probabilities_stsb = cross_encoder_predict_relevance(system_prompt, user_prompt, stsb_model, stsb_tokenizer, device) | |
| predicted_label_ms, probabilities_ms = cross_encoder_predict_relevance(system_prompt, user_prompt, ms_model, ms_tokenizer, device) | |
| result = f""" | |
| **Prediction Summary** | |
| **1. Model: jinaai/jina-embeddings-v2-small-en** | |
| - **Prediction**: {"π₯ Off-topic" if predicted_label_jina==1 else "π© On-topic"} | |
| - **Probability of being off-topic**: {probabilities_jina[0][1]:.2%} | |
| **2. Model: cross-encoder/stsb-roberta-base** | |
| - **Prediction**: {"π₯ Off-topic" if predicted_label_stsb==1 else "π© On-topic"} | |
| - **Probability of being off-topic**: {probabilities_stsb[0][1]:.2%} | |
| **3. Model: cross-encoder/ms-marco-MiniLM-L-6-v2** | |
| - **Prediction**: {"π₯ Off-topic" if predicted_label_ms==1 else "π© On-topic"} | |
| - **Probability of being off-topic**: {probabilities_ms[0][1]:.2%} | |
| """ | |
| return result | |
| with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as app: | |
| gr.Markdown("# Off-Topic Classification using Fine-tuned Embeddings and Cross-Encoder Models") | |
| with gr.Row(): | |
| system_prompt = gr.TextArea(label="System Prompt", lines=5) | |
| user_prompt = gr.TextArea(label="User Prompt", lines=5) | |
| # Button to run the prediction | |
| get_classfication = gr.Button("Check Content") | |
| output_result = gr.Markdown(label="Classification and Probabilities") | |
| get_classfication.click( | |
| fn=predict, | |
| inputs=[system_prompt, user_prompt], | |
| outputs=output_result | |
| ) | |
| if __name__ == "__main__": | |
| app.launch() | |