Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from loaded_model import CNNModel
|
| 5 |
+
import loaded_model
|
| 6 |
+
|
| 7 |
+
model = CNNModel()
|
| 8 |
+
model.load_state_dict(torch.load(f="https://huggingface.co/spaces/gpbhupinder/test/blob/main/model_-%2023%20june%202024%2019_22.pt"))
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Define a function to make predictions with your model
|
| 12 |
+
def classify_image(image):
|
| 13 |
+
# Preprocess the image
|
| 14 |
+
preprocess = loaded_model.create_transformer()
|
| 15 |
+
|
| 16 |
+
image_tensor = preprocess(image)
|
| 17 |
+
image_tensor = image_tensor.unsqueeze(0)
|
| 18 |
+
|
| 19 |
+
# Make prediction
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
output = model(image_tensor)
|
| 22 |
+
_, predicted_class = torch.max(output, 1)
|
| 23 |
+
|
| 24 |
+
return f"Predicted class: {predicted_class.item()}"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
gr.Interface(fn=classify_image, inputs="sketchpad", outputs="label").launch()
|