aliabd HF Staff commited on
Commit
c923726
·
verified ·
1 Parent(s): 311294c

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. requirements.txt +2 -2
  2. run.ipynb +1 -1
  3. run.py +1 -2
requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- gradio-client @ git+https://github.com/gradio-app/gradio@de997e67c9a7feb9e2eccebf92969366dbd67eba#subdirectory=client/python
2
- https://gradio-builds.s3.amazonaws.com/de997e67c9a7feb9e2eccebf92969366dbd67eba/gradio-4.39.0-py3-none-any.whl
 
1
+ gradio-client @ git+https://github.com/gradio-app/gradio@9b42ba8f1006c05d60a62450d3036ce0d6784f86#subdirectory=client/python
2
+ https://gradio-builds.s3.amazonaws.com/9b42ba8f1006c05d60a62450d3036ce0d6784f86/gradio-4.39.0-py3-none-any.whl
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: annotatedimage_component"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import pathlib\n", "from PIL import Image\n", "import numpy as np\n", "import urllib.request\n", "\n", "\n", "source_dir = pathlib.Path(__file__).parent\n", "\n", "urllib.request.urlretrieve(\n", " 'https://gradio-builds.s3.amazonaws.com/demo-files/base.png',\n", " str(source_dir / \"base.png\")\n", ")\n", "urllib.request.urlretrieve(\n", " \"https://gradio-builds.s3.amazonaws.com/demo-files/buildings.png\",\n", " str(source_dir / \"buildings.png\")\n", ")\n", "\n", "base_image = Image.open(str(source_dir / \"base.png\"))\n", "building_image = Image.open(str(source_dir / \"buildings.png\"))\n", "\n", "# Create segmentation mask\n", "building_image = np.asarray(building_image)[:, :, -1] > 0\n", "\n", "with gr.Blocks() as demo:\n", " gr.AnnotatedImage(\n", " value=(base_image, [(building_image, \"buildings\")]),\n", " height=500,\n", " )\n", "\n", "demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: annotatedimage_component"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import pathlib\n", "from PIL import Image\n", "import numpy as np\n", "import urllib.request\n", "\n", "source_dir = pathlib.Path(__file__).parent\n", "\n", "urllib.request.urlretrieve(\n", " 'https://gradio-builds.s3.amazonaws.com/demo-files/base.png',\n", " str(source_dir / \"base.png\")\n", ")\n", "urllib.request.urlretrieve(\n", " \"https://gradio-builds.s3.amazonaws.com/demo-files/buildings.png\",\n", " str(source_dir / \"buildings.png\")\n", ")\n", "\n", "base_image = Image.open(str(source_dir / \"base.png\"))\n", "building_image = Image.open(str(source_dir / \"buildings.png\"))\n", "\n", "# Create segmentation mask\n", "building_image = np.asarray(building_image)[:, :, -1] > 0\n", "\n", "with gr.Blocks() as demo:\n", " gr.AnnotatedImage(\n", " value=(base_image, [(building_image, \"buildings\")]),\n", " height=500,\n", " )\n", "\n", "demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -4,7 +4,6 @@ from PIL import Image
4
  import numpy as np
5
  import urllib.request
6
 
7
-
8
  source_dir = pathlib.Path(__file__).parent
9
 
10
  urllib.request.urlretrieve(
@@ -28,4 +27,4 @@ with gr.Blocks() as demo:
28
  height=500,
29
  )
30
 
31
- demo.launch()
 
4
  import numpy as np
5
  import urllib.request
6
 
 
7
  source_dir = pathlib.Path(__file__).parent
8
 
9
  urllib.request.urlretrieve(
 
27
  height=500,
28
  )
29
 
30
+ demo.launch()