m. polinsky
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# streamlit_app.py manages the whole TopicDig process
|
| 2 |
+
from typing import List, Set
|
| 3 |
+
from collections import namedtuple
|
| 4 |
+
import random
|
| 5 |
+
import requests
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
from codetiming import Timer
|
| 9 |
+
import streamlit as st
|
| 10 |
+
|
| 11 |
+
from digestor import Digestor
|
| 12 |
+
from source import Source
|
| 13 |
+
from scrape_sources import NPRLite, CNNText, stub
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def initialize(limit, rando, use_cache=True):
|
| 18 |
+
clusters: dict[str:List[namedtuple]] = dict()
|
| 19 |
+
# This is a container for the source classes.
|
| 20 |
+
# Make sure you handle this. Whats the deal.
|
| 21 |
+
sources:List[Source]= [] # Write them and import? Read a config?
|
| 22 |
+
# FOR NOW ONLY add this explicitly here.
|
| 23 |
+
# MUST read in final version though.
|
| 24 |
+
sources.append(NPRLite(
|
| 25 |
+
'npr',
|
| 26 |
+
'https://text.npr.org/1001',
|
| 27 |
+
'sshleifer/distilbart-cnn-12-6',
|
| 28 |
+
'dbmdz/bert-large-cased-finetuned-conll03-english'
|
| 29 |
+
))
|
| 30 |
+
sources.append(CNNText(
|
| 31 |
+
'cnn',
|
| 32 |
+
'https://lite.cnn.com',
|
| 33 |
+
'sshleifer/distilbart-cnn-12-6',
|
| 34 |
+
'dbmdz/bert-large-cased-finetuned-conll03-english'
|
| 35 |
+
))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# initialize list to hold cluster data namedtuples
|
| 39 |
+
cluster_data: List[namedtuple('article', ['link','hed','entities', 'source'])]
|
| 40 |
+
article_dict : dict[str:namedtuple]
|
| 41 |
+
|
| 42 |
+
# For all sources retrieve_cluster_data
|
| 43 |
+
# returns List[namedtuples] with empty entity lists
|
| 44 |
+
|
| 45 |
+
cluster_data = []
|
| 46 |
+
article_meta = namedtuple('article_meta',['source', 'count'])
|
| 47 |
+
cluster_meta : List[article_meta] = []
|
| 48 |
+
for data_source in sources:
|
| 49 |
+
if limit is not None:
|
| 50 |
+
c_data, c_meta = data_source.retrieve_cluster_data(limit//len(sources))
|
| 51 |
+
else:
|
| 52 |
+
c_data, c_meta = data_source.retrieve_cluster_data()
|
| 53 |
+
cluster_data.append(c_data)
|
| 54 |
+
cluster_meta.append(article_meta(data_source.source_name, c_meta))
|
| 55 |
+
st.session_state[data_source.source_name] = f"Number of clusters from source: {data_source.source_name}\n\t{len(c_data)}"
|
| 56 |
+
print("Finished...moving on to clustering...")
|
| 57 |
+
cluster_data = cluster_data[0] + cluster_data[1]
|
| 58 |
+
# NER
|
| 59 |
+
# iterate the list of namedtuples,
|
| 60 |
+
for tup in cluster_data:
|
| 61 |
+
# pass each hed to the api query method, return the dict
|
| 62 |
+
# through the ner_results function to the 'entities' list.
|
| 63 |
+
# Populate stub entities list
|
| 64 |
+
perform_ner(tup, cache=use_cache)
|
| 65 |
+
generate_clusters(clusters, tup)
|
| 66 |
+
st.session_state['num_clusters'] = f"""Total number of clusters: {len(clusters)}"""
|
| 67 |
+
|
| 68 |
+
# Article stubs tracks all stubs
|
| 69 |
+
# If cluster is unsummarized, its hed's value is the namedtuple stub.
|
| 70 |
+
# Else reference digestor instance so summary can be found.
|
| 71 |
+
article_dict = {stub.hed: stub for stub in cluster_data}
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
return article_dict, clusters
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Am I going to use this for those two lines?
|
| 78 |
+
def perform_ner(tup:namedtuple('article',['link','hed','entities', 'source']), cache=True):
|
| 79 |
+
with Timer(name="ner_query_time", logger=None):
|
| 80 |
+
result = ner_results(ner_query(
|
| 81 |
+
{
|
| 82 |
+
"inputs":tup.hed,
|
| 83 |
+
"paramters":
|
| 84 |
+
{
|
| 85 |
+
"use_cache": cache,
|
| 86 |
+
},
|
| 87 |
+
}
|
| 88 |
+
))
|
| 89 |
+
for i in result:
|
| 90 |
+
tup.entities.append(i)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@st.cache()
|
| 94 |
+
def ner_query(payload):
|
| 95 |
+
print("making a query....")
|
| 96 |
+
data = json.dumps(payload)
|
| 97 |
+
response = requests.request("POST", NER_API_URL, headers=headers, data=data)
|
| 98 |
+
return json.loads(response.content.decode("utf-8"))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def generate_clusters(
|
| 103 |
+
the_dict: dict,
|
| 104 |
+
tup : namedtuple('article_stub',[ 'link','hed','entities', 'source'])
|
| 105 |
+
) -> dict:
|
| 106 |
+
for entity in tup.entities:
|
| 107 |
+
# Add cluster if entity not already in dict
|
| 108 |
+
if entity not in the_dict:
|
| 109 |
+
the_dict[entity] = []
|
| 110 |
+
# Add this article's link to the cluster dict
|
| 111 |
+
the_dict[entity].append(tup)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def ner_results(ner_object, groups=True, NER_THRESHOLD=0.5) -> List[str]:
|
| 115 |
+
# empty lists to collect our entities
|
| 116 |
+
people, places, orgs, misc = [], [], [], []
|
| 117 |
+
|
| 118 |
+
# 'ent' and 'designation' handle the difference between dictionary keys
|
| 119 |
+
# for aggregation strategy grouped vs ungrouped
|
| 120 |
+
ent = 'entity' if not groups else 'entity_group'
|
| 121 |
+
designation = 'I-' if not groups else ''
|
| 122 |
+
|
| 123 |
+
# Define actions -- this is a switch-case dictionary.
|
| 124 |
+
# keys are the identifiers used inthe return dict from
|
| 125 |
+
# the ner_query.
|
| 126 |
+
# values are list.append() for each of the lists
|
| 127 |
+
# created at the top of the function. They hold sorted entities.
|
| 128 |
+
# actions is used to pass entities into the lists.
|
| 129 |
+
# Why I called it actions I have no idea rename it.
|
| 130 |
+
actions = {designation+'PER':people.append,
|
| 131 |
+
designation+'LOC':places.append,
|
| 132 |
+
designation+'ORG':orgs.append,
|
| 133 |
+
designation+'MISC':misc.append
|
| 134 |
+
} # Is this an antipattern?
|
| 135 |
+
|
| 136 |
+
# For each dictionary in the ner result list, if the entity str doesn't contain a '#'
|
| 137 |
+
# and the confidence is > 90%, add the entity to the list for its type.
|
| 138 |
+
|
| 139 |
+
# actions[d[ent]](d['word']) accesses the key of actions that is returned
|
| 140 |
+
# from d[ent] and then passes the entity name, returned by d['word'] to
|
| 141 |
+
# the 'list.append' waiting to be called in the dict actions.
|
| 142 |
+
# Note the (). We access actions to call its append...
|
| 143 |
+
readable = [ actions[d[ent]](d['word']) for d in ner_object if '#' not in d['word'] and d['score'] > NER_THRESHOLD ]
|
| 144 |
+
|
| 145 |
+
# create list of all entities to return
|
| 146 |
+
ner_list = [i for i in set(people) if len(i) > 2] + [i for i in set(places) if len(i) > 2] + [i for i in set(orgs) if len(i) > 2] + [i for i in set(misc) if len(i) > 2]
|
| 147 |
+
|
| 148 |
+
return ner_list
|
| 149 |
+
|
| 150 |
+
# These could be passed through the command line
|
| 151 |
+
# or read from a config file.
|
| 152 |
+
# One of these is needed here for NER and one in Digestor for summarization.
|
| 153 |
+
NER_API_URL = "https://api-inference.huggingface.co/models/dbmdz/bert-large-cased-finetuned-conll03-english"
|
| 154 |
+
headers = {"Authorization": f"""Bearer {st.secrets['ato']}"""}
|
| 155 |
+
|
| 156 |
+
LIMIT = 20 # Controls time and number of clusters.
|
| 157 |
+
USE_CACHE = True
|
| 158 |
+
|
| 159 |
+
if not USE_CACHE:
|
| 160 |
+
print("NOT USING CACHE--ARE YOU GATHERING DATA?")
|
| 161 |
+
if LIMIT is not None:
|
| 162 |
+
print(f"LIMIT: {LIMIT}")
|
| 163 |
+
|
| 164 |
+
# digest store
|
| 165 |
+
digests = dict() # key is cluster, value is digestor object
|
| 166 |
+
out_dicts = []
|
| 167 |
+
# list to accept user choices
|
| 168 |
+
# retrieve cluster data and create dict to track each article (articleStubs)
|
| 169 |
+
# and create topic clusters by performing ner.
|
| 170 |
+
print("Initializing....")
|
| 171 |
+
article_dict, clusters = initialize(LIMIT, USE_CACHE)
|
| 172 |
+
# We now have clusters and cluster data. Redundancy.
|
| 173 |
+
# We call a display function and get the user input.
|
| 174 |
+
# For this its still streamlit.
|
| 175 |
+
|
| 176 |
+
# button to refresh topics
|
| 177 |
+
if st.button("Refresh topics!"):
|
| 178 |
+
article_dict, clusters = initialize(LIMIT, USE_CACHE)
|
| 179 |
+
|
| 180 |
+
selections = []
|
| 181 |
+
choices = list(clusters.keys())
|
| 182 |
+
choices.insert(0,'None')
|
| 183 |
+
|
| 184 |
+
st.write(st.session_state['cnn'])
|
| 185 |
+
st.write(st.session_state['npr'])
|
| 186 |
+
st.write(st.session_state['num_clusters'])
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# Form used to take 3 menu inputs
|
| 190 |
+
with st.form(key='columns_in_form'):
|
| 191 |
+
cols = st.columns(3)
|
| 192 |
+
for i, col in enumerate(cols):
|
| 193 |
+
selections.append(col.selectbox(f'Make a Selection', choices, key=i))
|
| 194 |
+
submitted = st.form_submit_button('Submit')
|
| 195 |
+
if submitted:
|
| 196 |
+
selections = [i for i in selections if i is not None]
|
| 197 |
+
with st.spinner(text="Digesting...please wait, this will take a few moments...Maybe check some messages or start reading the latest papers on summarization with transformers...."):
|
| 198 |
+
chosen = []
|
| 199 |
+
|
| 200 |
+
for i in selections: # i is supposed to be a list of stubs, mostly one
|
| 201 |
+
if i != 'None':
|
| 202 |
+
for j in clusters[i]:
|
| 203 |
+
if j not in chosen:
|
| 204 |
+
chosen.append(j) # j is a stub.
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# Digestor uses 'chosen' to create digest.
|
| 208 |
+
# 'user_choicese' is passed for reference.
|
| 209 |
+
digestor = Digestor(timer=Timer(), cache = USE_CACHE, stubs=chosen, user_choices=list(selections))
|
| 210 |
+
# happens internally but may be used differently so it isn't automatic upon digestor creation.
|
| 211 |
+
# Easily turn caching off for testing.
|
| 212 |
+
digestor.digest() # creates summaries and stores them associated with the digest
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# Get displayable digest and digest data
|
| 217 |
+
digestor.build_digest()
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
if len(digestor.text) == 0:
|
| 221 |
+
st.write("You didn't select a topic!")
|
| 222 |
+
else:
|
| 223 |
+
st.write("Your digest is ready:\n")
|
| 224 |
+
|
| 225 |
+
st.write(digestor.text)
|
| 226 |
+
|
| 227 |
+
"st.session_state object:", st.session_state
|