m. polinsky
commited on
Added refactored app code
Browse files- streamlit_app.py +185 -516
streamlit_app.py
CHANGED
|
@@ -1,563 +1,232 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
|
| 3 |
-
from transformers import pipeline, AutoModel, AutoTokenizer
|
| 4 |
-
|
| 5 |
-
import time
|
| 6 |
-
|
| 7 |
-
from time import time as t
|
| 8 |
-
|
| 9 |
-
from gazpacho import Soup, get
|
| 10 |
-
|
| 11 |
-
import tokenizers
|
| 12 |
-
|
| 13 |
-
import json
|
| 14 |
-
|
| 15 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# FUNCTIONS #
|
| 20 |
-
|
| 21 |
-
#############
|
| 22 |
-
|
| 23 |
-
ex = []
|
| 24 |
-
|
| 25 |
-
# Query the HuggingFace Inference engine.
|
| 26 |
-
|
| 27 |
-
def query(payload):
|
| 28 |
-
|
| 29 |
-
data = json.dumps(payload)
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
return json.loads(response.content.decode("utf-8"))
|
| 34 |
|
| 35 |
-
|
| 36 |
|
| 37 |
def ner_query(payload):
|
| 38 |
-
|
| 39 |
data = json.dumps(payload)
|
| 40 |
-
|
| 41 |
response = requests.request("POST", NER_API_URL, headers=headers, data=data)
|
| 42 |
-
|
| 43 |
return json.loads(response.content.decode("utf-8"))
|
| 44 |
|
| 45 |
-
# gets links and identifies if they're cnn or npr
|
| 46 |
|
| 47 |
-
def get_articles(user_choices, cnn_dict, npr_dict):
|
| 48 |
-
|
| 49 |
-
clustLinks = []
|
| 50 |
-
|
| 51 |
-
heds = {}
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
for each in user_choices:
|
| 58 |
-
|
| 59 |
-
for beach in clusters[each.lower()]:
|
| 60 |
-
|
| 61 |
-
if beach not in heds:
|
| 62 |
-
|
| 63 |
-
heds[beach] = 1
|
| 64 |
-
|
| 65 |
-
else:
|
| 66 |
-
|
| 67 |
-
heds[beach] += 1
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
# Convert keys (headlines) to list then sort in descending order of prevalence
|
| 72 |
-
|
| 73 |
-
sorted_heds = list(heds.keys())
|
| 74 |
-
|
| 75 |
-
sorted_heds.sort(key=lambda b: heds[b], reverse=True)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
for each in sorted_heds:
|
| 80 |
-
|
| 81 |
-
try:
|
| 82 |
-
|
| 83 |
-
# look up the headline in cnn
|
| 84 |
-
|
| 85 |
-
clustLinks.append(('cnn',cnn_dict[each]))
|
| 86 |
-
|
| 87 |
-
# if exception KeyError then lookup in npr
|
| 88 |
-
|
| 89 |
-
except KeyError:
|
| 90 |
-
|
| 91 |
-
clustLinks.append(('npr',npr_dict[each]))
|
| 92 |
-
|
| 93 |
-
return clustLinks
|
| 94 |
-
|
| 95 |
-
# gets articles from source via scraping
|
| 96 |
-
|
| 97 |
-
def retrieve(input_reslist):
|
| 98 |
-
|
| 99 |
-
cnn = 'https://lite.cnn.com'
|
| 100 |
-
|
| 101 |
-
npr = 'https://text.npr.org'
|
| 102 |
-
|
| 103 |
-
articles = []
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
# Scrapes from npr or cnn. Should modularize this and use a dict as a switch-case
|
| 108 |
-
|
| 109 |
-
for each in input_reslist:
|
| 110 |
-
|
| 111 |
-
if each[0] == 'npr':
|
| 112 |
-
|
| 113 |
-
container = Soup(get(npr+each[1])).find('div', {'class': "paragraphs-container"}).find('p')
|
| 114 |
-
|
| 115 |
-
articles.append(container)
|
| 116 |
-
|
| 117 |
-
if each[0] == 'cnn':
|
| 118 |
-
|
| 119 |
-
container = Soup(get(cnn+each[1])).find('div', {'class': 'afe4286c'})
|
| 120 |
-
|
| 121 |
-
# Extract all text from paragraph tags, each extracted from container
|
| 122 |
-
|
| 123 |
-
#story = '\n'.join([x.text for x in container.find('p') if x.text != ''])
|
| 124 |
-
|
| 125 |
-
story = container.find('p')
|
| 126 |
-
|
| 127 |
-
articles.append(story[4:])
|
| 128 |
-
|
| 129 |
-
time.sleep(1)
|
| 130 |
-
|
| 131 |
-
return articles
|
| 132 |
-
|
| 133 |
-
# Returns a list of articles
|
| 134 |
-
|
| 135 |
-
# Takes list of articles and assigns each articles' text to an int for some reason....
|
| 136 |
-
|
| 137 |
-
#
|
| 138 |
-
|
| 139 |
-
## *** Dictionary might shuffle articles?
|
| 140 |
-
|
| 141 |
-
#
|
| 142 |
-
|
| 143 |
-
def art_prep(retrieved):
|
| 144 |
-
|
| 145 |
-
a = []
|
| 146 |
-
|
| 147 |
-
for each in retrieved:
|
| 148 |
-
|
| 149 |
-
if type(each) is not list:
|
| 150 |
-
|
| 151 |
-
a.append(each.strip())
|
| 152 |
-
|
| 153 |
-
else:
|
| 154 |
-
|
| 155 |
-
a.append(''.join([art.strip() for art in each]))
|
| 156 |
-
|
| 157 |
-
return a
|
| 158 |
-
|
| 159 |
-
# User choices is the list of user-chosen entities.
|
| 160 |
-
|
| 161 |
-
def seek_and_sum(user_choices, cnn_dict, npr_dict):
|
| 162 |
-
|
| 163 |
-
# If no topics are selected return nothing
|
| 164 |
-
|
| 165 |
-
if len(user_choices) == 0:
|
| 166 |
-
|
| 167 |
-
return []
|
| 168 |
-
|
| 169 |
-
digs = []
|
| 170 |
-
|
| 171 |
-
prepped=art_prep(retrieve(get_articles(user_choices, cnn_dict, npr_dict)))
|
| 172 |
-
|
| 173 |
-
# Final is the output...the digest.
|
| 174 |
-
|
| 175 |
-
for piece in prepped:
|
| 176 |
-
|
| 177 |
-
digs.append(create_summaries(piece, 'sshleifer/distilbart-cnn-12-6'))
|
| 178 |
-
|
| 179 |
-
# Opportunity for processing here
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
return digs
|
| 184 |
-
|
| 185 |
-
# Chunks
|
| 186 |
-
|
| 187 |
-
def chunk_piece(piece, limit):
|
| 188 |
-
|
| 189 |
-
words = len(piece.split(' ')) # rough estimate of words. # words <= number tokens generally.
|
| 190 |
-
|
| 191 |
-
perchunk = words//limit
|
| 192 |
-
|
| 193 |
-
base_range = [i*limit for i in range(perchunk+1)]
|
| 194 |
-
|
| 195 |
-
range_list = [i for i in zip(base_range,base_range[1:])]
|
| 196 |
-
|
| 197 |
-
#range_list.append((range_list[-1][1],words)) try leaving off the end (or pad it?)
|
| 198 |
-
|
| 199 |
-
chunked_pieces = [' '.join(piece.split(' ')[i:j]).replace('\n','').replace('.','. ') for i,j in range_list]
|
| 200 |
-
|
| 201 |
-
return chunked_pieces
|
| 202 |
-
|
| 203 |
-
# Summarizes
|
| 204 |
-
|
| 205 |
-
def create_summaries(piece, chkpnt, lim=400):
|
| 206 |
-
|
| 207 |
-
tokenizer = AutoTokenizer.from_pretrained(chkpnt)
|
| 208 |
-
|
| 209 |
-
limit = lim
|
| 210 |
-
|
| 211 |
-
count = -1
|
| 212 |
-
|
| 213 |
-
summary = []
|
| 214 |
-
|
| 215 |
-
words = len(piece.split(' '))
|
| 216 |
-
|
| 217 |
-
if words >= limit:
|
| 218 |
-
|
| 219 |
-
# chunk the piece
|
| 220 |
-
|
| 221 |
-
#print(f'Chunking....')
|
| 222 |
-
|
| 223 |
-
proceed = False
|
| 224 |
-
|
| 225 |
-
while not proceed:
|
| 226 |
-
|
| 227 |
-
try:
|
| 228 |
-
|
| 229 |
-
chunked_pieces = chunk_piece(piece, limit)
|
| 230 |
-
|
| 231 |
-
for chunk in chunked_pieces:
|
| 232 |
-
|
| 233 |
-
token_length = len(tokenizer(chunk))
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
# Perform summarization
|
| 238 |
-
|
| 239 |
-
if token_length <= 512:
|
| 240 |
-
|
| 241 |
-
data = query({ "inputs": str(chunk), "parameters": {"do_sample": False} }) # The way I'm passing the chunk could be the problem? In a loop by ref?
|
| 242 |
-
|
| 243 |
-
summary.append(data[0]['summary_text'])
|
| 244 |
-
|
| 245 |
-
proceed = True
|
| 246 |
-
|
| 247 |
-
else:
|
| 248 |
-
|
| 249 |
-
proceed = False
|
| 250 |
-
|
| 251 |
-
limit -= 2 # Try to back off as little as possible.
|
| 252 |
-
|
| 253 |
-
summary = [] # empty summary we're starting again.
|
| 254 |
-
|
| 255 |
-
except IndexError: # Caused when 400 words get tokenized to > 512 tokens. Rare.
|
| 256 |
-
|
| 257 |
-
proceed = False
|
| 258 |
-
|
| 259 |
-
# lower the limit
|
| 260 |
-
|
| 261 |
-
limit -= 2 # Try to back off as little as possible.
|
| 262 |
-
|
| 263 |
-
summary = [] # empty summary we're starting again.
|
| 264 |
-
|
| 265 |
-
days_summary = ' '.join(summary) # Concatenate partial summaries
|
| 266 |
-
|
| 267 |
-
else:
|
| 268 |
-
|
| 269 |
-
#print(f'Summarizing whole piece')
|
| 270 |
-
|
| 271 |
-
proceed = False
|
| 272 |
-
|
| 273 |
-
while not proceed:
|
| 274 |
-
|
| 275 |
-
try:
|
| 276 |
-
|
| 277 |
-
# Perform summarization
|
| 278 |
-
|
| 279 |
-
data = query({ "inputs": str(piece), "parameters": {"do_sample": False} })
|
| 280 |
-
|
| 281 |
-
days_summary = data[0]['summary_text']
|
| 282 |
-
|
| 283 |
-
proceed= True
|
| 284 |
-
|
| 285 |
-
except IndexError:
|
| 286 |
-
|
| 287 |
-
proceed = False
|
| 288 |
-
|
| 289 |
-
piece = piece[:-4]
|
| 290 |
-
|
| 291 |
-
days_summary = ''
|
| 292 |
-
|
| 293 |
-
return days_summary
|
| 294 |
-
|
| 295 |
-
# This function creates a nice output from the dictionary the NER pipeline returns.
|
| 296 |
-
|
| 297 |
-
# It works for grouped_entities = True or False.
|
| 298 |
-
|
| 299 |
-
def ner_results(ner_object, indent=False, groups=True, NER_THRESHOLD=0.5):
|
| 300 |
-
|
| 301 |
# empty lists to collect our entities
|
| 302 |
-
|
| 303 |
people, places, orgs, misc = [], [], [], []
|
| 304 |
|
| 305 |
# 'ent' and 'designation' handle the difference between dictionary keys
|
| 306 |
-
|
| 307 |
# for aggregation strategy grouped vs ungrouped
|
| 308 |
-
|
| 309 |
ent = 'entity' if not groups else 'entity_group'
|
| 310 |
-
|
| 311 |
designation = 'I-' if not groups else ''
|
| 312 |
|
| 313 |
# Define actions -- this is a switch-case dictionary.
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
actions = {designation+'PER':people.append,
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
#
|
| 326 |
-
|
|
|
|
| 327 |
readable = [ actions[d[ent]](d['word']) for d in ner_object if '#' not in d['word'] and d['score'] > NER_THRESHOLD ]
|
| 328 |
|
| 329 |
# create list of all entities to return
|
| 330 |
-
|
| 331 |
ner_list = [i for i in set(people) if len(i) > 2] + [i for i in set(places) if len(i) > 2] + [i for i in set(orgs) if len(i) > 2] + [i for i in set(misc) if len(i) > 2]
|
| 332 |
|
| 333 |
return ner_list
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
def create_ner_dicts(state=True):
|
| 340 |
-
|
| 341 |
-
# Changing this will run the method again, refreshing the topics
|
| 342 |
-
|
| 343 |
-
status = state
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
url1 = 'https://lite.cnn.com/en'
|
| 348 |
-
|
| 349 |
-
soup_cnn = Soup(get(url1))
|
| 350 |
-
|
| 351 |
-
# extract each headline from the div containing the links.
|
| 352 |
-
|
| 353 |
-
cnn_text = [i.text for i in soup_cnn.find('div', {'class': 'afe4286c'}).find('a')]
|
| 354 |
-
|
| 355 |
-
cnn_links = [i.attrs['href'] for i in soup_cnn.find('div', {'class': 'afe4286c'}).find('a')]
|
| 356 |
-
|
| 357 |
-
cnn = [i for i in cnn_text if 'Analysis:' not in i and 'Opinion:' not in i]
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
# Get current links...in the future you'll have to check for overlaps.
|
| 364 |
-
|
| 365 |
-
url2 = 'https://text.npr.org/1001'
|
| 366 |
-
|
| 367 |
-
soup = Soup(get(url2))
|
| 368 |
-
|
| 369 |
-
# extract each headline
|
| 370 |
-
|
| 371 |
-
npr_text = [i.text for i in soup.find('div', {'class': 'topic-container'}).find('ul').find('a')]
|
| 372 |
-
|
| 373 |
-
npr_links = [i.attrs['href'] for i in soup.find('div', {'class': 'topic-container'}).find('ul').find('a')]
|
| 374 |
-
|
| 375 |
-
npr = [i for i in npr_text if 'Opinion:' not in i]
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
cnn_dict = {k[0]:k[1] for k in zip(cnn_text,cnn_links)}
|
| 380 |
-
|
| 381 |
-
npr_dict = {k[0]:k[1] for k in zip(npr_text,npr_links)}
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
# START Perform NER
|
| 386 |
-
|
| 387 |
-
cnn_ner = {x:ner_results(ner_query(x)) for x in cnn} ###################################################################################################
|
| 388 |
-
|
| 389 |
-
npr_ner = {x:ner_results(ner_query(x)) for x in npr} ################################# ################################# #################################
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
return cnn_dict, npr_dict, cnn_ner, npr_ner
|
| 394 |
-
|
| 395 |
-
## A function to change a state variable in create_dicts() above
|
| 396 |
-
|
| 397 |
-
## that then runs it and creates updated clusters.
|
| 398 |
-
|
| 399 |
-
def get_news_topics(cnn_ner, npr_ner):
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
## END Perform NER
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
# Select from articles.
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
## Select from articles that are clusterable only. (Entities were recognized.)
|
| 412 |
-
|
| 413 |
-
cnn_final = {x:npr_ner[x] for x in npr_ner.keys() if len(npr_ner[x]) != 0}
|
| 414 |
-
|
| 415 |
-
npr_final = {y:cnn_ner[y] for y in cnn_ner.keys() if len(cnn_ner[y]) != 0 }
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
# What's in the news?
|
| 420 |
-
|
| 421 |
-
# Get entities named in the pool of articles we're drawing from
|
| 422 |
-
|
| 423 |
-
e_list = []
|
| 424 |
-
|
| 425 |
-
for i in [i for i in cnn_final.values()]:
|
| 426 |
-
|
| 427 |
-
for j in i:
|
| 428 |
-
|
| 429 |
-
e_list.append(j)
|
| 430 |
-
|
| 431 |
-
for k in [k for k in npr_final.values()]:
|
| 432 |
-
|
| 433 |
-
for j in k:
|
| 434 |
-
|
| 435 |
-
e_list.append(j)
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
# This is a dictionary with keys: the list items....
|
| 440 |
-
|
| 441 |
-
clusters = {k.lower():[] for k in e_list}
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
## Perform Clustering
|
| 446 |
-
|
| 447 |
-
for hed in cnn_final.keys():
|
| 448 |
-
|
| 449 |
-
for item in cnn_final[hed]:
|
| 450 |
-
|
| 451 |
-
clusters[item.lower()].append(hed) # placing the headline in the list corresponding to the dictionary key for each entity.
|
| 452 |
-
|
| 453 |
-
for hed in npr_final.keys():
|
| 454 |
-
|
| 455 |
-
for item in npr_final[hed]:
|
| 456 |
-
|
| 457 |
-
clusters[item.lower()].append(hed)
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
return clusters
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
def update_topics():
|
| 468 |
-
|
| 469 |
-
st.legacy_caching.clear_cache()
|
| 470 |
-
|
| 471 |
-
dicts = [i for i in create_ner_dicts()]
|
| 472 |
-
|
| 473 |
-
clusters = get_news_topics(cnn_ner, npr_ner)
|
| 474 |
-
|
| 475 |
-
return clusters, dicts
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
#############
|
| 482 |
-
|
| 483 |
-
# SETUP #
|
| 484 |
-
|
| 485 |
-
#############
|
| 486 |
-
|
| 487 |
-
# Auth for HF Inference API and URL to the model we're using -- distilbart-cnn-12-6
|
| 488 |
-
|
| 489 |
-
headers = {"Authorization": f"""Bearer {st.secrets["ato"]}"""}
|
| 490 |
-
|
| 491 |
-
API_URL = "https://api-inference.huggingface.co/models/sshleifer/distilbart-cnn-12-6"
|
| 492 |
-
|
| 493 |
NER_API_URL = "https://api-inference.huggingface.co/models/dbmdz/bert-large-cased-finetuned-conll03-english"
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
|
| 507 |
selections = []
|
| 508 |
-
|
| 509 |
-
choices
|
| 510 |
-
|
| 511 |
-
for i in list(clusters.keys()):
|
| 512 |
-
|
| 513 |
-
choices.append(i)
|
| 514 |
-
|
| 515 |
-
# button to refresh topics
|
| 516 |
-
|
| 517 |
-
if st.button("Refresh topics!"):
|
| 518 |
-
|
| 519 |
-
new_data = update_topics()
|
| 520 |
-
|
| 521 |
-
clusters = new_data[0]
|
| 522 |
-
|
| 523 |
-
cnn_dict, npr_dict, cnn_ner, npr_ner = new_data[1][0], new_data[1][1], new_data[1][2], new_data[1][3]
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
# Form used to take 3 menu inputs
|
| 528 |
-
|
| 529 |
with st.form(key='columns_in_form'):
|
| 530 |
-
|
| 531 |
cols = st.columns(3)
|
| 532 |
-
|
| 533 |
for i, col in enumerate(cols):
|
| 534 |
-
|
| 535 |
selections.append(col.selectbox(f'Make a Selection', choices, key=i))
|
| 536 |
-
|
| 537 |
submitted = st.form_submit_button('Submit')
|
| 538 |
-
|
| 539 |
if submitted:
|
| 540 |
-
|
| 541 |
selections = [i for i in selections if i is not None]
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
if len(digest) == 0:
|
| 548 |
-
|
| 549 |
st.write("You didn't select a topic!")
|
| 550 |
-
|
| 551 |
else:
|
| 552 |
-
|
| 553 |
st.write("Your digest is ready:\n")
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
count = 0
|
| 558 |
-
|
| 559 |
-
for each in digest:
|
| 560 |
-
|
| 561 |
-
count += 1
|
| 562 |
-
|
| 563 |
-
st.write(each)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import requests
|
| 2 |
+
import json
|
| 3 |
+
from typing import List, Set
|
| 4 |
+
from collections import namedtuple
|
| 5 |
+
from functools import lru_cache
|
| 6 |
+
from datetime import datetime as dt
|
| 7 |
+
import os, os.path
|
| 8 |
|
| 9 |
+
from codetiming import Timer
|
| 10 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# local code
|
| 13 |
+
from digestor import Digestor
|
| 14 |
+
from source import Source
|
| 15 |
+
from scrape_sources import NPRLite, CNNText, stub
|
| 16 |
+
import random
|
| 17 |
+
|
| 18 |
+
# EDIT: before doing NER check time of last scrape and just read in from JSON store instead of rescraping
|
| 19 |
+
# can force rescrape
|
| 20 |
+
# This may take a config to get sources as input
|
| 21 |
+
|
| 22 |
+
def initialize(limit, rando, use_cache=True):
|
| 23 |
+
clusters: dict[str:List[namedtuple]] = dict()
|
| 24 |
+
# This is a container for the source classes.
|
| 25 |
+
# Make sure you handle this. Whats the deal.
|
| 26 |
+
sources:List[Source]= [] # Write them and import? Read a config?
|
| 27 |
+
# FOR NOW ONLY add this explicitly here.
|
| 28 |
+
# MUST read in final version though.
|
| 29 |
+
sources.append(NPRLite(
|
| 30 |
+
'npr',
|
| 31 |
+
'https://text.npr.org/1001',
|
| 32 |
+
'sshleifer/distilbart-cnn-12-6',
|
| 33 |
+
'dbmdz/bert-large-cased-finetuned-conll03-english'
|
| 34 |
+
))
|
| 35 |
+
sources.append(CNNText(
|
| 36 |
+
'cnn',
|
| 37 |
+
'https://lite.cnn.com',
|
| 38 |
+
'sshleifer/distilbart-cnn-12-6',
|
| 39 |
+
'dbmdz/bert-large-cased-finetuned-conll03-english'
|
| 40 |
+
))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# initialize list to hold cluster data namedtuples
|
| 44 |
+
cluster_data: List[namedtuple('article', ['link','hed','entities', 'source'])]
|
| 45 |
+
article_dict : dict[str:namedtuple]
|
| 46 |
+
|
| 47 |
+
# For all sources retrieve_cluster_data
|
| 48 |
+
# returns List[namedtuples] with empty entity lists
|
| 49 |
+
# TEST THIS ALL V V V
|
| 50 |
+
cluster_data = []
|
| 51 |
+
article_meta = namedtuple('article_meta',['source', 'count'])
|
| 52 |
+
cluster_meta : List[article_meta] = []
|
| 53 |
+
print("Calling data source retrieve cluster data....")
|
| 54 |
+
for data_source in sources:
|
| 55 |
+
if limit is not None:
|
| 56 |
+
c_data, c_meta = data_source.retrieve_cluster_data(limit//len(sources))
|
| 57 |
+
else:
|
| 58 |
+
c_data, c_meta = data_source.retrieve_cluster_data()
|
| 59 |
+
cluster_data.append(c_data)
|
| 60 |
+
cluster_meta.append(article_meta(data_source.source_name, c_meta))
|
| 61 |
+
print("Finished...moving on to clustering...")
|
| 62 |
+
cluster_data = cluster_data[0] + cluster_data[1]
|
| 63 |
+
# NER
|
| 64 |
+
# iterate the list of namedtuples,
|
| 65 |
+
for tup in cluster_data:
|
| 66 |
+
# pass each hed to the api query method, return the dict
|
| 67 |
+
# through the ner_results function to the 'entities' list.
|
| 68 |
+
# Populate stub entities list
|
| 69 |
+
perform_ner(tup, cache=use_cache)
|
| 70 |
+
generate_clusters(clusters, tup)
|
| 71 |
+
st.write(f"""Total number of clusters: {len(clusters)}""")
|
| 72 |
+
|
| 73 |
+
# Article stubs tracks all stubs
|
| 74 |
+
# If cluster is unsummarized, its hed's value is the namedtuple stub.
|
| 75 |
+
# Else reference digestor instance so summary can be found.
|
| 76 |
+
article_dict = {stub.hed: stub for stub in cluster_data}
|
| 77 |
+
|
| 78 |
+
return article_dict, clusters
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# Am I going to use this for those two lines?
|
| 82 |
+
def perform_ner(tup:namedtuple('article',['link','hed','entities', 'source']), cache=True):
|
| 83 |
+
with Timer(name="ner_query_time", logger=None):
|
| 84 |
+
result = ner_results(ner_query(
|
| 85 |
+
{
|
| 86 |
+
"inputs":tup.hed,
|
| 87 |
+
"paramters":
|
| 88 |
+
{
|
| 89 |
+
"use_cache": cache,
|
| 90 |
+
},
|
| 91 |
+
}
|
| 92 |
+
))
|
| 93 |
+
for i in result:
|
| 94 |
+
tup.entities.append(i)
|
| 95 |
|
|
|
|
| 96 |
|
|
|
|
| 97 |
|
| 98 |
def ner_query(payload):
|
| 99 |
+
print("making a query....")
|
| 100 |
data = json.dumps(payload)
|
|
|
|
| 101 |
response = requests.request("POST", NER_API_URL, headers=headers, data=data)
|
|
|
|
| 102 |
return json.loads(response.content.decode("utf-8"))
|
| 103 |
|
|
|
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
def generate_clusters(
|
| 107 |
+
the_dict: dict,
|
| 108 |
+
tup : namedtuple('article_stub',[ 'link','hed','entities', 'source'])
|
| 109 |
+
) -> dict:
|
| 110 |
+
for entity in tup.entities:
|
| 111 |
+
# Add cluster if entity not already in dict
|
| 112 |
+
if entity not in the_dict:
|
| 113 |
+
the_dict[entity] = []
|
| 114 |
+
# Add this article's link to the cluster dict
|
| 115 |
+
the_dict[entity].append(tup)
|
| 116 |
|
| 117 |
|
| 118 |
+
def ner_results(ner_object, groups=True, NER_THRESHOLD=0.5) -> List[str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
# empty lists to collect our entities
|
|
|
|
| 120 |
people, places, orgs, misc = [], [], [], []
|
| 121 |
|
| 122 |
# 'ent' and 'designation' handle the difference between dictionary keys
|
|
|
|
| 123 |
# for aggregation strategy grouped vs ungrouped
|
|
|
|
| 124 |
ent = 'entity' if not groups else 'entity_group'
|
|
|
|
| 125 |
designation = 'I-' if not groups else ''
|
| 126 |
|
| 127 |
# Define actions -- this is a switch-case dictionary.
|
| 128 |
+
# keys are the identifiers used inthe return dict from
|
| 129 |
+
# the ner_query.
|
| 130 |
+
# values are list.append() for each of the lists
|
| 131 |
+
# created at the top of the function. They hold sorted entities.
|
| 132 |
+
# actions is used to pass entities into the lists.
|
| 133 |
+
# Why I called it actions I have no idea rename it.
|
| 134 |
actions = {designation+'PER':people.append,
|
| 135 |
+
designation+'LOC':places.append,
|
| 136 |
+
designation+'ORG':orgs.append,
|
| 137 |
+
designation+'MISC':misc.append
|
| 138 |
+
} # Is this an antipattern?
|
| 139 |
+
|
| 140 |
+
# For each dictionary in the ner result list, if the entity str doesn't contain a '#'
|
| 141 |
+
# and the confidence is > 90%, add the entity to the list for its type.
|
| 142 |
+
|
| 143 |
+
# actions[d[ent]](d['word']) accesses the key of actions that is returned
|
| 144 |
+
# from d[ent] and then passes the entity name, returned by d['word'] to
|
| 145 |
+
# the 'list.append' waiting to be called in the dict actions.
|
| 146 |
+
# Note the (). We access actions to call its append...
|
| 147 |
readable = [ actions[d[ent]](d['word']) for d in ner_object if '#' not in d['word'] and d['score'] > NER_THRESHOLD ]
|
| 148 |
|
| 149 |
# create list of all entities to return
|
|
|
|
| 150 |
ner_list = [i for i in set(people) if len(i) > 2] + [i for i in set(places) if len(i) > 2] + [i for i in set(orgs) if len(i) > 2] + [i for i in set(misc) if len(i) > 2]
|
| 151 |
|
| 152 |
return ner_list
|
| 153 |
|
| 154 |
+
# These could be passed through the command line
|
| 155 |
+
# or read from a config file.
|
| 156 |
+
# One of these is needed here for NER and one in Digestor for summarization.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
NER_API_URL = "https://api-inference.huggingface.co/models/dbmdz/bert-large-cased-finetuned-conll03-english"
|
| 158 |
+
headers = {"Authorization": f"""Bearer {st.secrets['ato']}"""}
|
| 159 |
+
|
| 160 |
+
LIMIT = None # Controls time and number of clusters.
|
| 161 |
+
USE_CACHE = True
|
| 162 |
+
|
| 163 |
+
if not USE_CACHE:
|
| 164 |
+
print("NOT USING CACHE--ARE YOU GATHERING DATA?")
|
| 165 |
+
if LIMIT is not None:
|
| 166 |
+
print(f"LIMIT: {LIMIT}")
|
| 167 |
+
|
| 168 |
+
# digest store
|
| 169 |
+
digests = dict() # key is cluster, value is digestor object
|
| 170 |
+
out_dicts = []
|
| 171 |
+
# list to accept user choices
|
| 172 |
+
# retrieve cluster data and create dict to track each article (articleStubs)
|
| 173 |
+
# and create topic clusters by performing ner.
|
| 174 |
+
print("Initializing....")
|
| 175 |
+
article_dict, clusters = initialize(LIMIT, USE_CACHE)
|
| 176 |
+
# We now have clusters and cluster data. Redundancy.
|
| 177 |
+
# We call a display function and get the user input.
|
| 178 |
+
# For this its still streamlit.
|
| 179 |
|
| 180 |
selections = []
|
| 181 |
+
choices = list(clusters.keys())
|
| 182 |
+
choices.insert(0,'None')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
# Form used to take 3 menu inputs
|
|
|
|
| 184 |
with st.form(key='columns_in_form'):
|
|
|
|
| 185 |
cols = st.columns(3)
|
|
|
|
| 186 |
for i, col in enumerate(cols):
|
|
|
|
| 187 |
selections.append(col.selectbox(f'Make a Selection', choices, key=i))
|
|
|
|
| 188 |
submitted = st.form_submit_button('Submit')
|
|
|
|
| 189 |
if submitted:
|
|
|
|
| 190 |
selections = [i for i in selections if i is not None]
|
| 191 |
+
with st.spinner(text="Digesting...please wait, this will take a few moments...Maybe check some messages or start reading the latest papers on summarization with transformers...."):
|
| 192 |
+
found = False
|
| 193 |
+
# Check if we already have this digest.
|
| 194 |
+
for i in digests:
|
| 195 |
+
if set(list(answers.values())) == set(list(i)):
|
| 196 |
+
digestor = digests[i]
|
| 197 |
+
found = True
|
| 198 |
+
break
|
| 199 |
+
|
| 200 |
+
# If we need a new digest
|
| 201 |
+
if not found:
|
| 202 |
+
chosen = []
|
| 203 |
+
# Why not just use answers.values()?
|
| 204 |
+
for i in selections: # i is supposed to be a list of stubs, mostly one
|
| 205 |
+
if i != 'None':
|
| 206 |
+
for j in clusters[i]:
|
| 207 |
+
if j not in chosen:
|
| 208 |
+
chosen.append(j) # j is supposed to be a stub.
|
| 209 |
+
|
| 210 |
+
# Article dict contains stubs for unprocessed articles and lists of summarized chunks for processed ones.
|
| 211 |
+
# Here we put together a list of article stubs and/or summary chunks and let the digestor sort out what it does with them,
|
| 212 |
+
chosen = [i if isinstance(article_dict[i.hed], stub) else article_dict[i.hed] for i in chosen]
|
| 213 |
+
# Digestor uses 'chosen', passed through 'stubs' to create digest.
|
| 214 |
+
# 'user_choicese' is passed for reference.
|
| 215 |
+
# Passing list(answers.values()) includes 'None' choices.
|
| 216 |
+
digestor = Digestor(timer=Timer(), cache = USE_CACHE, stubs=chosen, user_choices=list(selections))
|
| 217 |
+
# happens internally but may be used differently so it isn't automatic upon digestor creation.
|
| 218 |
+
# Easily turn caching off for testing.
|
| 219 |
+
digestor.digest() # creates summaries and stores them associated with the digest
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
# Get displayable digest and digest data
|
| 224 |
+
digestor.build_digest()# only returns for data collection
|
| 225 |
+
|
| 226 |
+
digest = digestor.text
|
| 227 |
if len(digest) == 0:
|
|
|
|
| 228 |
st.write("You didn't select a topic!")
|
|
|
|
| 229 |
else:
|
|
|
|
| 230 |
st.write("Your digest is ready:\n")
|
| 231 |
+
|
| 232 |
+
st.write(digest)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|